Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
RSC Chem Biol ; 3(1): 96-111, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35128413

RESUMEN

The development of phenotypic models of Parkinson's disease (PD) has enabled screening and identification of phenotypically active small molecules that restore complex biological pathways affected by PD toxicity. While these phenotypic screening platforms are powerful, they do not inherently enable direct identification of the cellular targets of promising lead compounds. To overcome this, chemoproteomic platforms like Thermal Proteome Profiling (TPP) and Stability of Proteins from Rates of Oxidation (SPROX) can be implemented to reveal protein targets of biologically active small molecules. Here we utilize both of these chemoproteomic strategies to identify targets of an N-arylbenzimidazole compound, NAB2, which was previously identified for its ability to restore viability in cellular models of PD-associated α-synuclein toxicity. The combined results from our TPP and SPROX analyses of NAB2 and the proteins in a neuroblastoma-derived SHSY5Y cell lysate reveal a previously unrecognized protein target of NAB2. This newly recognized target, Rab1a, is a small GTPase that acts as a molecular switch to regulate ER-to-Golgi trafficking, a process that is disrupted by α-synuclein toxicity and restored by NAB2 treatment. Further validation reveals that NAB2 binds to Rab1a with selectivity for its GDP-bound form and that NAB2 treatment phenocopies Rab1a overexpression in alleviation of α-synuclein toxicity. Finally, we conduct a preliminary investigation into the relationship between Rab1a and the E3 ubiquitin ligase, Nedd4, a previously identified NAB2 target. Together, these efforts expand our understanding of the mechanism of NAB2 in the alleviation of α-synuclein toxicity and reinforce the utility of chemoproteomic identification of the targets of phenotypically active small molecules that regulate complex biological pathways.

2.
ACS Chem Neurosci ; 12(21): 3972-3984, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34652126

RESUMEN

Disrupted cellular trafficking and transport processes are hallmarks of many neurodegenerative disorders (NDs). Recently, efforts have been made toward developing and implementing experimental platforms to identify small molecules that may help restore normative trafficking functions. There have been a number of successes in targeting endomembrane trafficking with the identification of compounds that restore cell viability through rescue of protein transport and trafficking. Here, we describe some of the experimental platforms implemented for small molecule screening efforts for rescue of trafficking defects in neurodegeneration. A survey of phenotypically active small molecules identified to date is provided, including a summary of medicinal chemistry efforts and insights into putative targets and mechanisms of action. In particular, emphasis is put on ligands that demonstrate activity in more than one model of neurodegeneration as retention of phenotypic activity across ND models suggests conservation of biological targets across NDs.


Asunto(s)
Endosomas , Enfermedades Neurodegenerativas , Transporte Biológico , Endosomas/metabolismo , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...