Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 11(6)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37371829

RESUMEN

Argininosuccinic aciduria (ASA) is a metabolic disorder caused by a deficiency in argininosuccinate lyase (ASL), which cleaves argininosuccinic acid to arginine and fumarate in the urea cycle. ASL deficiency (ASLD) leads to hepatocyte dysfunction, hyperammonemia, encephalopathy, and respiratory alkalosis. Here we describe a novel therapeutic approach for treating ASA, based on nucleoside-modified messenger RNA (modRNA) formulated in lipid nanoparticles (LNP). To optimize ASL-encoding mRNA, we modified its cap, 5' and 3' untranslated regions, coding sequence, and the poly(A) tail. We tested multiple optimizations of the formulated mRNA in human cells and wild-type C57BL/6 mice. The ASL protein showed robust expression in vitro and in vivo and a favorable safety profile, with low cytokine and chemokine secretion even upon administration of increasing doses of ASL mRNA-LNP. In the ASLNeo/Neo mouse model of ASLD, intravenous administration of the lead therapeutic candidate LNP-ASL CDS2 drastically improved the survival of the mice. When administered twice a week lower doses partially protected and 3 mg/kg LNP-ASL CDS2 fully protected the mice. These results demonstrate the considerable potential of LNP-formulated, modified ASL-encoding mRNA as an effective alternative to AAV-based approaches for the treatment of ASA.

2.
Sci Immunol ; 7(78): eade9888, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36378074

RESUMEN

The SARS-CoV-2 Omicron variant and its sublineages show pronounced viral escape from neutralizing antibodies elicited by vaccination or prior SARS-CoV-2 variant infection owing to over 30-amino acid alterations within the spike (S) glycoprotein. Breakthrough infection of vaccinated individuals with Omicron sublineages BA.1 and BA.2 is associated with distinct patterns of cross-neutralizing activity against SARS-CoV-2 variants of concern (VOCs). In continuation of our previous work, we characterized the effect of Omicron BA.4/BA.5 S glycoprotein exposure on the neutralizing antibody response upon breakthrough infection in vaccinated individuals and upon variant-adapted booster vaccination in mice. We found that immune sera from triple mRNA-vaccinated individuals with subsequent breakthrough infection during the Omicron BA.4/BA.5 wave showed cross-neutralizing activity against previous Omicron variants BA.1, BA.2, BA.2.12.1, and BA.4/BA.5 itself. Administration of a prototypic BA.4/BA.5-adapted mRNA booster vaccine to mice after SARS-CoV-2 wild-type strain-based primary immunization is associated with broader cross-neutralizing activity than a BA.1-adapted booster. Whereas the Omicron BA.1-adapted mRNA vaccine in a bivalent format (wild-type + BA.1) broadens cross-neutralizing activity relative to the BA.1 monovalent booster, cross-neutralization of BA.2 and descendants is more effective in mice boosted with a bivalent wild-type + BA.4/BA.5 vaccine. In naïve mice, primary immunization with the bivalent wild-type + Omicron BA.4/BA.5 vaccine induces strong cross-neutralizing activity against Omicron VOCs and previous variants. These findings suggest that, when administered as boosters, mono- and bivalent Omicron BA.4/BA.5-adapted vaccines enhance neutralization breadth and that the bivalent version also has the potential to confer protection to individuals with no preexisting immunity against SARS-CoV-2.


Asunto(s)
COVID-19 , Vacunas , Humanos , Animales , Ratones , SARS-CoV-2 , COVID-19/prevención & control , Anticuerpos Neutralizantes , Infección Irruptiva , ARN Mensajero
3.
Pharmaceutics ; 14(2)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35214060

RESUMEN

The presence of the cap structure on the 5'-end of in vitro-transcribed (IVT) mRNA determines its translation and stability, underpinning its use in therapeutics. Both enzymatic and co-transcriptional capping may lead to incomplete positioning of the cap on newly synthesized RNA molecules. IVT mRNAs are rapidly emerging as novel biologics, including recent vaccines against COVID-19 and vaccine candidates against other infectious diseases, as well as for cancer immunotherapies and protein replacement therapies. Quality control methods necessary for the preclinical and clinical stages of development of these therapeutics are under ongoing development. Here, we described a method to assess the presence of the cap structure of IVT mRNAs. We designed a set of ribozyme assays to specifically cleave IVT mRNAs at a unique position and release 5'-end capped or uncapped cleavage products up to 30 nt long. We purified these products using silica-based columns and visualized/quantified them using denaturing polyacrylamide gel electrophoresis (PAGE) or liquid chromatography and mass spectrometry (LC-MS). Using this technology, we determined the capping efficiencies of IVT mRNAs with different features, which include: Different cap structures, diverse 5' untranslated regions, different nucleoside modifications, and diverse lengths. Taken together, the ribozyme cleavage assays we developed are fast and reliable for the analysis of capping efficiency for research and development purposes, as well as a general quality control for mRNA-based therapeutics.

4.
Science ; 375(6581): 678-680, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35040667

RESUMEN

The globally circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern Omicron (B.1.1.529) has a large number of mutations, especially in the spike protein, indicating that recognition by neutralizing antibodies may be compromised. We tested Wuhan (Wuhan-Hu-1 reference strain), Beta (B.1.351), Delta (B.1.617.2), or Omicron pseudoviruses with sera of 51 participants who received two or three doses of the messenger RNA (mRNA)-based COVID-19 vaccine BNT162b2. After two doses, Omicron-neutralizing titers were reduced >22-fold compared with Wuhan-neutralizing titers. One month after the third vaccine dose, Omicron-neutralizing titers were increased 23-fold relative to their levels after two doses and were similar to levels of Wuhan-neutralizing titers after two doses. The requirement of a third vaccine dose to effectively neutralize Omicron was confirmed with sera from a subset of participants using live SARS-CoV-2. These data suggest that three doses of the mRNA vaccine BNT162b2 may protect against Omicron-mediated COVID-19.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacuna BNT162/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacuna BNT162/administración & dosificación , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Humanos , Esquemas de Inmunización , Inmunización Secundaria , Persona de Mediana Edad , Mutación , Pruebas de Neutralización , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos T/inmunología , Vacunación , Adulto Joven
5.
Nature ; 595(7868): 572-577, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34044428

RESUMEN

BNT162b2, a nucleoside-modified mRNA formulated in lipid nanoparticles that encodes the SARS-CoV-2 spike glycoprotein (S) stabilized in its prefusion conformation, has demonstrated 95% efficacy in preventing COVID-191. Here we extend a previous phase-I/II trial report2 by presenting data on the immune response induced by BNT162b2 prime-boost vaccination from an additional phase-I/II trial in healthy adults (18-55 years old). BNT162b2 elicited strong antibody responses: at one week after the boost, SARS-CoV-2 serum geometric mean 50% neutralizing titres were up to 3.3-fold above those observed in samples from individuals who had recovered from COVID-19. Sera elicited by BNT162b2 neutralized 22 pseudoviruses bearing the S of different SARS-CoV-2 variants. Most participants had a strong response of IFNγ+ or IL-2+ CD8+ and CD4+ T helper type 1 cells, which was detectable throughout the full observation period of nine weeks following the boost. Using peptide-MHC multimer technology, we identified several BNT162b2-induced epitopes that were presented by frequent MHC alleles and conserved in mutant strains. One week after the boost, epitope-specific CD8+ T cells of the early-differentiated effector-memory phenotype comprised 0.02-2.92% of total circulating CD8+ T cells and were detectable (0.01-0.28%) eight weeks later. In summary, BNT162b2 elicits an adaptive humoral and poly-specific cellular immune response against epitopes that are conserved in a broad range of variants, at well-tolerated doses.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Linfocitos T/inmunología , Adolescente , Adulto , Vacuna BNT162 , Linfocitos T CD8-positivos/inmunología , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/efectos adversos , Epítopos de Linfocito T/inmunología , Femenino , Humanos , Inmunoglobulina G/inmunología , Memoria Inmunológica , Interferón gamma/inmunología , Interleucina-2/inmunología , Masculino , Persona de Mediana Edad , SARS-CoV-2/química , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Células TH1/inmunología , Adulto Joven
6.
Nanomedicine (Lond) ; 15(21): 2053-2069, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32885728

RESUMEN

Aim: For vaccines the combination between an antigen and adjuvants are both crucially important to trigger an effective immune response in dendritic cells. Innovative adjuvants like resiquimod or muramyldipeptide have their target protein inside the cell. Materials & methods: Up/downregulation and proteome expression was investigated for the adjuvant combination resiquimod and muramyldipeptide in a soluble form versus encapsulated into a nanocarrier. Results: We found that 1225 genes were upregulated after nanocarrier treatment while 478 genes were downregulated. Most prominent were interferon-stimulated genes with more than 25-times higher expression after nanocarrier treatment, for example RSAD2 and ISG15, which were recently found to have antiviral or antitumor effects. Conclusion: Encapsulation gives a more effective upregulation of vaccine-related genes.


Asunto(s)
Adyuvantes Inmunológicos , Células Dendríticas , Vacunas , Adyuvantes Inmunológicos/farmacología , Antígenos , Células Dendríticas/inmunología , Perfilación de la Expresión Génica
7.
ACS Appl Mater Interfaces ; 12(19): 21192-21200, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32142252

RESUMEN

Biofilm formation is most commonly combatted with antibiotics or biocides. However, proven toxicity and increasing resistance of bacteria increase the need for alternative strategies to prevent adhesion of bacteria to surfaces. Chemical modification of the surfaces by tethering of functional polymer brushes or films provides a route toward antifouling coatings. Furthermore, nanorough or superhydrophobic surfaces can delay biofilm formation. Here we show that submicrometer-sized roughness can outweigh surface chemistry by testing the adhesion of E. coli to surfaces of different topography and wettability over long exposure times (>7 days). Gram-negative and positive bacterial strains are tested for comparison. We show that an irregular three-dimensional layer of silicone nanofilaments suppresses bacterial adhesion, both in the presence and absence of an air cushion. We hypothesize that a 3D topography can delay biofilm formation (i) if bacteria do not fit into the pores of the coating or (ii) if bending of the bacteria is required to adhere. Thus, such a 3D topography offers an underestimated possibility to design antibacterial surfaces that do not require biocides or antibiotics.


Asunto(s)
Adhesión Bacteriana/fisiología , Incrustaciones Biológicas/prevención & control , Escherichia coli/fisiología , Vidrio/química , Hidrocarburos Fluorados/química , Micrococcus luteus/fisiología , Nanoestructuras/química , Pseudomonas fluorescens/fisiología , Siliconas/química , Humectabilidad
8.
Adv Healthc Mater ; 8(23): e1901215, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31701673

RESUMEN

Electrodes coated with poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) have been employed to measure the integrity of cellular barriers. However, a systematic experimental study of the correlation between tissue integrity and impedance of the sensing device has not yet been conducted. Using impedance spectroscopy, how the impedance ratio of the biological tissue to the recording device affects the recording ability of the latter is investigated. PEDOT:PSS-coated electrodes of various dimensions are employed and the effect of their size to their sensing efficiency is examined. The biotic/abiotic ensemble is modeled with a simple equivalent circuit and an analytical expression of the total impedance as a function of frequency is extracted. The results reveal a critical impedance ratio of the biological tissue to the sensor which allows for efficient sensing of the tissue integrity. This work provides the ground rules for improved impedance-based biosensors with optimized sensitivity.


Asunto(s)
Técnicas Biosensibles/métodos , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Espectroscopía Dieléctrica/métodos , Polímeros/química , Poliestirenos/química , Impedancia Eléctrica , Electrodos
9.
Adv Healthc Mater ; 8(16): e1900128, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31318183

RESUMEN

The integrity of CaCo-2 cell barriers is investigated by organic electrochemical transistors (OECTs) in a current-driven configuration. Ion transport through cellular barriers via the paracellular pathway is modulated by tight junctions between adjacent cells. Rupturing its integrity by H2 O2 is monitored by the change of the output voltage in the transfer characteristics. It is demonstrated that by operating the OECT in a current-driven configuration, the sensitive and temporal resolution for monitoring the cell barrier integrity is strongly enhanced as compared to the OECT transient response measurement. As a result, current-driven OECTs are useful tools to assess dynamic and critical changes in tight junctions, relevant for clinical applications as drug targeting and screening.


Asunto(s)
Electroquímica/métodos , Transistores Electrónicos , Técnicas Biosensibles/métodos , Células CACO-2 , Forma de la Célula/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/farmacología
10.
Drug Deliv ; 25(1): 1694-1705, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30394120

RESUMEN

The oral application of pharmaceuticals is unarguably the most convenient method of application. Especially for protein- or peptide-based drugs, however, the effectiveness is significantly reduced due to enzymatic digestion in the stomach as well as a poor bioavailability in the small intestine. For these difficult formulations, the encapsulation into nanocarriers would protect the sensitive drug and thus could considerably improve the efficiency of oral drug delivery. In the last years, many candidate biodegradable nanomaterials for such carrier systems have been published. However, before the cargo can be released, the nanocarrier needs to cross multiple barriers of the human body, including a layer of intestinal mucus and epithelial as well as endothelial cells. For overcoming these cellular barriers, transcytosis is favored over a paracellular transport for most nanomaterials as paracellular transport routes lack selectivity of transported molecules once opened up. The exact mechanisms behind the transcellular translocations are up to now still not completely understood. For the vast majority of nanocarriers, the rate of transcellular transport is not sufficient to realize their application in oral drug delivery. Especially trafficking into the endolysosomal pathway often marks a key problem. In this review, we focus on the molecular mechanisms of overcoming cellular barriers, especially transcytosis, and highlight difficulties of oral drug delivery via nanocarriers.


Asunto(s)
Administración Oral , Portadores de Fármacos , Sistemas de Liberación de Medicamentos/métodos , Nanoestructuras , Animales , Exocitosis/efectos de los fármacos , Humanos
11.
Nat Nanotechnol ; 13(9): 862-869, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29915272

RESUMEN

To promote drug delivery to exact sites and cell types, the surface of nanocarriers is functionalized with targeting antibodies or ligands, typically coupled by covalent chemistry. Once the nanocarrier is exposed to biological fluid such as plasma, however, its surface is inevitably covered with various biomolecules forming the protein corona, which masks the targeting ability of the nanoparticle. Here, we show that we can use a pre-adsorption process to attach targeting antibodies to the surface of the nanocarrier. Pre-adsorbed antibodies remain functional and are not completely exchanged or covered by the biomolecular corona, whereas coupled antibodies are more affected by this shielding. We conclude that pre-adsorption is potentially a versatile, efficient and rapid method of attaching targeting moieties to the surface of nanocarriers.


Asunto(s)
Anticuerpos , Células Dendríticas/metabolismo , Portadores de Fármacos , Nanopartículas de Magnetita/química , Corona de Proteínas/química , Anticuerpos/química , Anticuerpos/farmacología , Células Dendríticas/citología , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Humanos , Poliestirenos/química
12.
Acta Biomater ; 71: 432-443, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29530823

RESUMEN

The transport of nanocarriers through barriers like the gut in a living organism involves the transcytosis of these nanocarriers through the cell layer dividing two compartments. Understanding how this process works is not only essential to further developing strategies for a more effective nanocarrier transport system but also for providing fundamental insights into the barrier function as a means of protection against micro- and nanoplastics in the food chain. We therefore set out to investigate the different uptake mechanisms, intracellular trafficking and the routes for exocytosis for small polystyrene nanoparticles (PS-NPs ca. 100 nm) as mimicking nanocarriers in a Caco-2 cell model for gut-blood transition. We used label-free, quantitative mass spectrometry (MS) for determining the proteome that adhered to transversed nanoparticles. From this rich proteomics dataset, as well as previous studies, we generated stable-transfected Caco-2 cell lines carrying the green fluorescent protein (GFP) coupled to proteins of interest for uptake, early, late and exocytotic endosomes. We detected the spatial and temporal overlap of such marked endosomes with the nanocarrier signal in confocal laser scanning and super-resolution microscopy. There was a clear distinction in the time course of nanoparticle trafficking between groups of proteins for endocytosis, intracellular storage and putatively transcytosis and we identified several key transcytotic markers like Rab3 and Copine1. Moreover, we postulate the necessity of a certain protein composition on endosomes for successful transcytosis of nanocarriers. Finally, we define the two-sided impasse of the lysosome as a dead end for nano-plastic and the limit of nanocarriers in the 100 nm range. STATEMENT OF SIGNIFICANCE: Here we focus on mechanisms of transcytosis and how we can follow these with methods not used before. First, we use mass spectrometry of transcytosed nanoparticles to pick proteins of the transcytosis machinery describing key proteins involved. We can detect the complex mixtures of proteins. As this is a dynamic process involving whole families of proteins interacting with each other and as this is an orchestrated process we coined the term protein machineries for this active interplay. By genetically modifying the proteins attaching GFP we are able to follow the transcytosis pathway. We evaluate the process in a quantitative manner over time. This reveals that the most obvious obstacle to transcytosis is a routing of the nanocarriers to the lysosomes.


Asunto(s)
Portadores de Fármacos , Modelos Biológicos , Nanopartículas/química , Poliestirenos , Proteoma/metabolismo , Transcitosis/efectos de los fármacos , Células CACO-2 , Proteínas de Unión al Calcio/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Endosomas/metabolismo , Humanos , Poliestirenos/química , Poliestirenos/farmacocinética , Poliestirenos/farmacología , Proteínas de Unión al GTP rab3/metabolismo
13.
ACS Appl Mater Interfaces ; 8(44): 29915-29922, 2016 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-27753484

RESUMEN

Materials with a hierarchical structure often demonstrate superior properties with combined and even synergistic effects of multiple functions. Herein, we report the design of a new class of material with a multicompartment nanofibrous structure as a promising candidate for antibacterial wound dressing and functional textile applications. The design consists in first synthesizing nanocapsules loaded with functional payloads and subsequently embedding the nanocapsules into polymer nanofibers by using the colloid-electrospinning technique. The nanocontainer-in-nanofiber structure allows for a selective and separate loading of different functional agents with different polarities, and it offers a flexible combination of the properties of nanocontainers and nanofibers. An example of the potential for these multicompartment materials is demonstrated here, in which the synergistic antibacterial effect against E. coli K-12 and B. Subtilis combined with anti-UV property is shown.


Asunto(s)
Nanofibras , Antibacterianos , Vendajes , Escherichia coli
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...