Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biofabrication ; 16(4)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38955197

RESUMEN

Plasma cells (PCs) in bone marrow (BM) play an important role in both protective and pathogenic humoral immune responses, e.g. in various malignant and non-malignant diseases such as multiple myeloma, primary and secondary immunodeficiencies and autoimmune diseases. Dedicated microenvironmental niches in the BM provide PCs with biomechanical and soluble factors that support their long-term survival. There is a high need for appropriate and robust model systems to better understand PCs biology, to develop new therapeutic strategies for PCs-related diseases and perform targeted preclinical studies with high predictive value. Most preclinical data have been derived fromin vivostudies in mice, asin vitrostudies of human PCs are limited due to restricted survival and functionality in conventional 2D cultures that do not reflect the unique niche architecture of the BM. We have developed a microphysiological, dynamic 3D BM culture system (BM-MPS) based on human primary tissue (femoral biopsies), mechanically supported by a hydrogel scaffold casing. While a bioinert agarose casing did not support PCs survival, a photo-crosslinked collagen-hyaluronic acid (Col-HA) hydrogel preserved the native BM niche architecture and allowed PCs survivalin vitrofor up to 2 weeks. Further, the Col-HA hydrogel was permissive to lymphocyte migration into the microphysiological system´s circulation. Long-term PCs survival was related to the stable presence in the culture of soluble factors, as APRIL, BAFF, and IL-6. Increasing immunoglobulins concentrations in the medium confirm their functionality over culture time. To the best of our knowledge, this study is the first report of successful long-term maintenance of primary-derived non-malignant PCsin vitro. Our innovative model system is suitable for in-depthin vitrostudies of human PCs regulation and exploration of targeted therapeutic approaches such as CAR-T cell therapy or biologics.


Asunto(s)
Hidrogeles , Células Plasmáticas , Humanos , Células Plasmáticas/citología , Células Plasmáticas/metabolismo , Hidrogeles/química , Supervivencia Celular/efectos de los fármacos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Células de la Médula Ósea/citología , Colágeno/química , Médula Ósea/metabolismo , Células Cultivadas , Técnicas de Cultivo Tridimensional de Células , Modelos Biológicos , Andamios del Tejido/química , Sefarosa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA