Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 1443: 21-30, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27246332

RESUMEN

Identification of small molecules that interact specifically with the ligand-binding domains (LBDs) of nuclear receptors (NRs) can be accomplished using a variety of methodologies. Here, we describe the use of differential scanning fluorimetry to identify these ligands, a technique that requires no modification or derivatization of either the protein or the ligand, and uses an instrument that is becoming increasingly affordable and common in modern molecular biology laboratories, the quantitative, or real-time, PCR machine. Upon being introduced to specific ligands, nuclear receptors undergo structural and dynamic changes that tend to increase molecular stability, which can be measured by the resistance of the protein to heat denaturation. Differential scanning fluorimetry (DSF) uses a dielectric sensitive fluorescent dye to measure the thermal denaturation, or "melting" point (Tm) of a protein under different conditions, in this case in the absence and presence of a candidate ligand. Using DSF, multiple candidates can be screened at once, in numbers corresponding to plate size of the instrument used (e.g., 96- or 384-well), allowing significant throughput if a modest library of compounds needs to be tested.


Asunto(s)
Colorantes Fluorescentes/metabolismo , Fluorometría/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Ligandos , Receptores Citoplasmáticos y Nucleares/metabolismo , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Unión Proteica , Desnaturalización Proteica , Dominios Proteicos
2.
Biochem Mol Biol Educ ; 41(3): 173-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23589167

RESUMEN

This laboratory exercise demonstrates three different analytical forms of the polymerase chain reaction (PCR) that allow students to genotype themselves at four different loci. Here, we present protocols to allow students to a) genotype a non-coding polymorphic Variable Number of Tandem Repeat (VNTR) locus on human chromosome 5 using conventional PCR, b) perform PCR - Restriction Fragment Polymorphism (PCR-RFLP) analysis to genotype a Single Nucleotide Polymorphism (SNP) of the TAS2R38 gene on human chromosome 7 and c) perform duplex Allele Specific Primer-PCR (ASP-PCR) to genotype SNPs of two enzyme-encoding genes in a single biochemical pathway on human chromosomes 4 and 12. All PCR reactions have been optimized to use a single easily purified sample of the students' own DNA and run under a single thermal cycler program using inexpensive reagents to produce robust and clearly interpretable results on a single agarose gel. As presented here, the lab occupies two lab periods of 2 h, 40 min each: DNA purification followed by PCR reactions set-up on Day 1 and enzyme digestion of the PCR-RFLP and agarose gel analysis on Day 2.


Asunto(s)
Electroforesis en Gel de Agar/métodos , Genotipo , Técnicas de Genotipaje/métodos , Biología Molecular/educación , Reacción en Cadena de la Polimerasa/métodos , Estudiantes , Cromosomas Humanos Par 12 , Cromosomas Humanos Par 4 , Cromosomas Humanos Par 5 , Cromosomas Humanos Par 7 , Sitios Genéticos , Humanos , Repeticiones de Minisatélite , Polimorfismo de Longitud del Fragmento de Restricción , Receptores Acoplados a Proteínas G/genética
3.
Biochem Mol Biol Educ ; 39(2): 141-4, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21445906

RESUMEN

This laboratory exercise is an inquiry-based investigation developed around the core experiment where students, working alone or in groups, each purify and analyze their own prescreened colored proteins using immobilized metal affinity chromatography (IMAC). Here, we present reagents and protocols that allow 12 different proteins to be purified in parallel without specialized equipment and within a 2.5- to 3-hour undergraduate teaching laboratory. The visual feedback of purifying a colored biomolecule provides real-time emphasis of the power and simplicity of recombinant DNA technology and IMAC. As presented here in its simplest form, this laboratory occupies two laboratory periods: purification followed by SDS-PAGE analysis. As such, it can be easily inserted into the existing curriculum of a Biochemistry, Molecular Biology, Biotechnology, or even Genetics course to illustrate core concepts of central dogma and protein purification. Furthermore, the proteins in hand at the end of this 2-week module can also be used for follow-up experiments tailored to the needs, timeframe, and facilities available.


Asunto(s)
Proteínas Arqueales/aislamiento & purificación , Proteínas Bacterianas/aislamiento & purificación , Laboratorios , Sistemas de Lectura Abierta , Enseñanza/métodos , Proteínas Arqueales/química , Proteínas Bacterianas/química , Cromatografía de Afinidad/métodos , Color , Curriculum , Humanos
4.
Biochemistry ; 48(29): 7056-71, 2009 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-19405475

RESUMEN

Nuclear receptors E75, which regulates development in Drosophila melanogaster, and Rev-erbbeta, which regulates circadian rhythm in humans, bind heme within their ligand binding domains (LBD). The heme-bound ligand binding domains of E75 and Rev-erbbeta were studied using electronic absorption, MCD, resonance Raman, and EPR spectroscopies. Both proteins undergo redox-dependent ligand switching and CO- and NO-induced ligand displacement. In the Fe(III) oxidation state, the nuclear receptor hemes are low spin and 6-coordinate with cysteine(thiolate) as one of the two axial heme ligands. The sixth ligand is a neutral donor, presumably histidine. When the heme is reduced to the Fe(II) oxidation state, the cysteine(thiolate) is replaced by a different neutral donor ligand, whose identity is not known. CO binds to the Fe(II) heme in both E75(LBD) and Rev-erbbeta(LBD) opposite a sixth neutral ligand, plausibly the same histidine that served as the sixth ligand in the Fe(III) state. NO binds to the heme of both proteins; however, the NO-heme is 5-coordinate in E75 and 6-coordinate in Rev-erbbeta. These nuclear receptors exhibit coordination characteristics that are similar to other known redox and gas sensors, suggesting that E75 and Rev-erbbeta may function in heme-, redox-, or gas-regulated control of cellular function.


Asunto(s)
Drosophila melanogaster/metabolismo , Hemoproteínas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Represoras/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Animales , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Ligandos , Oxidación-Reducción , Espectrometría Raman
5.
Cell ; 113(6): 731-42, 2003 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-12809604

RESUMEN

Ecdysteroid pulses trigger the major developmental transitions during the Drosophila life cycle. These hormonal responses are thought to be mediated by the ecdysteroid receptor (EcR) and its heterodimeric partner Ultraspiracle (USP). We provide evidence for a second ecdysteroid signaling pathway mediated by DHR38, the Drosophila ortholog of the mammalian NGFI-B subfamily of orphan nuclear receptors. DHR38 also heterodimerizes with USP, and this complex responds to a distinct class of ecdysteroids in a manner that is independent of EcR. This response is unusual in that it does not involve direct binding of ecdysteroids to either DHR38 or USP. X-ray crystallographic analysis of DHR38 reveals the absence of both a classic ligand binding pocket and coactivator binding site, features that seem to be common to all NGFI-B subfamily members. Taken together, these data reveal the existence of a separate structural class of nuclear receptors that is conserved from fly to humans.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila , Drosophila melanogaster/crecimiento & desarrollo , Ecdisteroides/metabolismo , Larva/crecimiento & desarrollo , Metamorfosis Biológica/fisiología , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Sitios de Unión/fisiología , Línea Celular , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Larva/citología , Larva/metabolismo , Modelos Moleculares , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Estructura Secundaria de Proteína/fisiología , Estructura Terciaria de Proteína/fisiología , Receptores de Esteroides/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...