Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Appl ; 34(4): e2970, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38602711

RESUMEN

Tree growth is a key mechanism driving carbon sequestration in forest ecosystems. Environmental conditions are important regulators of tree growth that can vary considerably between nearby urban and rural forests. For example, trees growing in cities often experience hotter and drier conditions than their rural counterparts while also being exposed to higher levels of light, pollution, and nutrient inputs. However, the extent to which these intrinsic differences in the growing conditions of trees in urban versus rural forests influence tree growth response to climate is not well known. In this study, we tested for differences in the climate sensitivity of tree growth between urban and rural forests along a latitudinal transect in the eastern United States that included Boston, Massachusetts, New York City, New York, and Baltimore, Maryland. Using dendrochronology analyses of tree cores from 55 white oak trees (Quercus alba), 55 red maple trees (Acer rubrum), and 41 red oak trees (Quercus rubra) we investigated the impacts of heat stress and water stress on the radial growth of individual trees. Across our three-city study, we found that tree growth was more closely correlated with climate stress in the cooler climate cities of Boston and New York than in Baltimore. Furthermore, heat stress was a significant hindrance to tree growth in higher latitudes while the impacts of water stress appeared to be more evenly distributed across latitudes. We also found that the growth of oak trees, but not red maple trees, in the urban sites of Boston and New York City was more adversely impacted by heat stress than their rural counterparts, but we did not see these urban-rural differences in Maryland. Trees provide a wide range of important ecosystem services and increasing tree canopy cover was typically an important component of urban sustainability strategies. In light of our findings that urbanization can influence how tree growth responds to a warming climate, we suggest that municipalities consider these interactions when developing their tree-planting palettes and when estimating the capacity of urban forests to contribute to broader sustainability goals in the future.


Asunto(s)
Cambio Climático , Árboles , Urbanización , Árboles/crecimiento & desarrollo , Acer/crecimiento & desarrollo , Acer/fisiología , Quercus/crecimiento & desarrollo , Quercus/fisiología , Bosques , Ciudades
2.
Glob Chang Biol ; 28(9): 3094-3109, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35170155

RESUMEN

As urbanization and forest fragmentation increase around the globe, it is critical to understand how rates of respiration and carbon losses from soil carbon pools are affected by these processes. This study characterizes soils in fragmented forests along an urban to rural gradient, evaluating the sensitivity of soil respiration to changes in soil temperature and moisture near the forest edge. While previous studies found elevated rates of soil respiration at temperate forest edges in rural areas compared to the forest interior, we find that soil respiration is suppressed at the forest edge in urban areas. At urban sites, respiration rates are 25% lower at the forest edge relative to the interior, likely due to high temperature and aridity conditions near urban edges. While rural soils continue to respire with increasing temperatures, urban soil respiration rates asymptote as temperatures climb and soils dry. Soil temperature- and moisture-sensitivity modeling shows that respiration rates in urban soils are less sensitive to rising temperatures than those in rural soils. Scaling these results to Massachusetts (MA), which encompasses 0.25 Mha of the urban forest, we find that failure to account for decreases in soil respiration rates near urban forest edges leads to an overestimate of growing-season soil carbon fluxes of >350,000 Mg C. This difference is almost 2.5 times that for rural soils in the analogous comparison (underestimate of <143,000 Mg C), even though rural forest area is more than four times greater than urban forest area in MA. While a changing climate may stimulate carbon losses from rural forest edge soils, urban forests may experience enhanced soil carbon sequestration near the forest edge. These findings highlight the need to capture the effects of forest fragmentation and land use context when making projections about soil behavior and carbon cycling in a warming and increasingly urbanized world.


Asunto(s)
Bosques , Suelo , Ciclo del Carbono , Secuestro de Carbono , Respiración
3.
Nat Commun ; 12(1): 7181, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34893596

RESUMEN

Fragmentation transforms the environment along forest edges. The prevailing narrative, driven by research in tropical systems, suggests that edge environments increase tree mortality and structural degradation resulting in net decreases in ecosystem productivity. We show that, in contrast to tropical systems, temperate forest edges exhibit increased forest growth and biomass with no change in total mortality relative to the forest interior. We analyze >48,000 forest inventory plots across the north-eastern US using a quasi-experimental matching design. At forest edges adjacent to anthropogenic land covers, we report increases of 36.3% and 24.1% in forest growth and biomass, respectively. Inclusion of edge impacts increases estimates of forest productivity by up to 23% in agriculture-dominated areas, 15% in the metropolitan coast, and +2% in the least-fragmented regions. We also quantify forest fragmentation globally, at 30-m resolution, showing that temperate forests contain 52% more edge forest area than tropical forests. Our analyses upend the conventional wisdom of forest edges as less productive than intact forest and call for a reassessment of the conservation value of forest fragments.


Asunto(s)
Fenómenos Biológicos , Biomasa , Bosques , Árboles/crecimiento & desarrollo , Agricultura , Conservación de los Recursos Naturales , Ecología , Ecosistema , Clima Tropical
4.
Ecology ; 101(11): e03173, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32852804

RESUMEN

Climate models project higher growing-season temperatures and a decline in the depth and duration of winter snowpack throughout many north temperate ecosystems over the next century. A smaller snowpack is projected to induce more frequent soil freeze/thaw cycles in winter in northern hardwood forests of the northeastern United States. We measured the combined effects of warmer growing-season soil temperatures and increased winter freeze/thaw cycles on rates of leaf-level photosynthesis and transpiration (sap flow) of red maple (Acer rubrum) trees in a northern hardwood forest at the Climate Change Across Seasons Experiment at Hubbard Brook Experimental Forest in New Hampshire. Soil temperatures were warmed 5°C above ambient temperatures during the growing season and soil freeze/thaw cycles were induced in winter to mimic the projected changes in soil temperature over the next century. Relative to reference plots, growing-season soil warming increased rates of leaf-level photosynthesis by up to 85.32 ± 4.33%, but these gains were completely offset by soil freeze/thaw cycles in winter, suggesting that increased freeze/thaw cycles in winter over the next 100 yr will reduce the effect of warming on leaf-level carbon gains. Soil warming in the growing season increased rates of transpiration per kilopascal of vapor pressure deficit (VPD) by up to 727.39 ± 0.28%, even when trees were exposed to increased frequency of soil freeze/thaw cycles in the previous winter, which could influence regional hydrology in the future. Using climate projections downscaled from the Coupled Model Intercomparison Project, we project increased rates of whole-season transpiration in these forests over the next century by 42-61%. We also project 52-77 additional days when daily air temperatures will be above the long-term average daily maximum during the growing season at Hubbard Brook. Together, these results show that projected changes in climate across both the growing season and winter are likely to cause greater rates of water uptake and have no effect on rates of leaf-level carbon uptake by trees, with potential ecosystem consequences for hydrology and carbon cycling in northern hardwood forests.


Asunto(s)
Ecosistema , Suelo , Cambio Climático , Bosques , New Hampshire , Estaciones del Año , Nieve
5.
Sci Total Environ ; 709: 136196, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-31887518

RESUMEN

Ecosystem services provided by urban forests are increasingly included in municipal-level responses to climate change. However, the ecosystem functions that generate these services, such as biomass carbon (C) uptake, can differ substantially from nearby rural forest. In particular, the scaled effect of canopy spatial configuration on tree growth in cities is uncertain, as is the scope for medium-term policy intervention. This study integrates high spatial resolution data on tree canopy and biomass in the city of Boston, Massachusetts, with local measurements of tree growth rates to estimate the magnitude and distribution of annual biomass C uptake. We further project C uptake, biomass, and canopy cover change to 2040 under alternative policy scenarios affecting the planting and preservation of urban trees. Our analysis shows that 85% of tree canopy area was within 10 m of an edge, indicating essentially open growing conditions. Using growth models accounting for canopy edge effects and growth context, Boston's current biomass C uptake may be approximately double (median 10.9 GgC yr-1, 0.5 MgC ha-1 yr-1) the estimates based on rural forest growth, much of it occurring in high-density residential areas. Total annual C uptake to long-term biomass storage was equivalent to <1% of estimated annual fossil CO2 emissions for the city. In built-up areas, reducing mortality in larger trees resulted in the highest predicted increase in canopy cover (+25%) and biomass C stocks (236 GgC) by 2040, while planting trees in available road margins resulted in the greatest predicted annual C uptake (7.1 GgC yr-1). This study highlights the importance of accounting for the altered ecosystem structure and function in urban areas in evaluating ecosystem services. Effective municipal climate responses should consider the substantial fraction of total services performed by trees in developed areas, which may produce strong but localized atmospheric C sinks.


Asunto(s)
Biomasa , Boston , Carbono , Ciudades , Bosques , Massachusetts , Árboles
6.
Glob Chang Biol ; 25(2): 420-430, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30506555

RESUMEN

Changes in growing season climate are often the foci of research exploring forest response to climate change. By contrast, little is known about tree growth response to projected declines in winter snowpack and increases in soil freezing in seasonally snow-covered forest ecosystems, despite extensive documentation of the importance of winter climate in mediating ecological processes. We conducted a 5-year snow-removal experiment whereby snow was removed for the first 4-5 weeks of winter in a northern hardwood forest at the Hubbard Brook Experimental Forest in New Hampshire, USA. Our results indicate that adverse impacts of reduced snowpack and increased soil freezing on the physiology of Acer saccharum (sugar maple), a dominant species across northern temperate forests, are accompanied by a 40 ± 3% reduction in aboveground woody biomass increment, averaged across the 6 years following the start of the experiment. Further, we find no indication of growth recovery 1 year after cessation of the experiment. Based on these findings, we integrate spatial modeling of snowpack depth with forest inventory data to develop a spatially explicit, regional-scale assessment of the vulnerability of forest aboveground growth to projected declines in snowpack depth and increased soil frost. These analyses indicate that nearly 65% of sugar maple basal area in the northeastern United States resides in areas that typically experience insulating snowpack. However, under the RCP 4.5 and 8.5 emissions scenarios, we project a 49%-95% reduction in forest area experiencing insulating snowpack by the year 2099 in the northeastern United States, leaving large areas of northern forest vulnerable to these changes in winter climate, particularly along the northern edge of the region. Our study demonstrates that research focusing on growing season climate alone overestimates the stimulatory effect of warming temperatures on tree and forest growth in seasonally snow-covered forests.


Asunto(s)
Bosques , Congelación , Calentamiento Global , Nieve , Suelo , Árboles/crecimiento & desarrollo , Acer/crecimiento & desarrollo , Cambio Climático , New Hampshire
8.
PLoS One ; 12(2): e0171928, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28207766

RESUMEN

Climate models project an increase in mean annual air temperatures and a reduction in the depth and duration of winter snowpack for many mid and high latitude and high elevation seasonally snow-covered ecosystems over the next century. The combined effects of these changes in climate will lead to warmer soils in the growing season and increased frequency of soil freeze-thaw cycles (FTCs) in winter due to the loss of a continuous, insulating snowpack. Previous experiments have warmed soils or removed snow via shoveling or with shelters to mimic projected declines in the winter snowpack. To our knowledge, no experiment has examined the interactive effects of declining snowpack and increased frequency of soil FTCs, combined with soil warming in the snow-free season on terrestrial ecosystems. In addition, none have mimicked directly the projected increase in soil FTC frequency in tall statured forests that is expected as a result of a loss of insulating snow in winter. We established the Climate Change Across Seasons Experiment (CCASE) at Hubbard Brook Experimental Forest in the White Mountains of New Hampshire in 2012 to assess the combined effects of these changes in climate on a variety of pedoclimate conditions, biogeochemical processes, and ecology of northern hardwood forests. This paper demonstrates the feasibility of creating soil FTC events in a tall statured ecosystem in winter to simulate the projected increase in soil FTC frequency over the next century and combines this projected change in winter climate with ecosystem warming throughout the snow-free season. Together, this experiment provides a new and more comprehensive approach for climate change experiments that can be adopted in other seasonally snow-covered ecosystems to simulate expected changes resulting from global air temperature rise.


Asunto(s)
Cambio Climático , Simulación por Computador , Ecosistema , Monitoreo del Ambiente/métodos , Estaciones del Año , Nieve , Temperatura
9.
Proc Natl Acad Sci U S A ; 114(1): 107-112, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27994137

RESUMEN

Forest fragmentation is a ubiquitous, ongoing global phenomenon with profound impacts on the growing conditions of the world's remaining forest. The temperate broadleaf forest makes a large contribution to the global terrestrial carbon sink but is also the most heavily fragmented forest biome in the world. We use field measurements and geospatial analyses to characterize carbon dynamics in temperate broadleaf forest fragments. We show that forest growth and biomass increase by 89 ± 17% and 64 ± 12%, respectively, from the forest interior to edge, but ecosystem edge enhancements are not currently captured by models or approaches to quantifying regional C balance. To the extent that the findings from our research represent the forest of southern New England in the United States, we provide a preliminary estimate that edge growth enhancement could increase estimates of the region's carbon uptake and storage by 13 ± 3% and 10 ± 1%, respectively. However, we also find that forest growth near the edge declines three times faster than that in the interior in response to heat stress during the growing season. Using climate projections, we show that future heat stress could reduce the forest edge growth enhancement by one-third by the end of the century. These findings contrast studies of edge effects in the world's other major forest biomes and indicate that the strength of the temperate broadleaf forest carbon sink and its capacity to mitigate anthropogenic carbon emissions may be stronger, but also more sensitive to climate change than previous estimates suggest.


Asunto(s)
Ciclo del Carbono/fisiología , Secuestro de Carbono/fisiología , Carbono/metabolismo , Cambio Climático , Bosques , Árboles/crecimiento & desarrollo , Ecosistema , New England
10.
Proc Natl Acad Sci U S A ; 113(48): 13797-13802, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27849609

RESUMEN

The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.

11.
Ecology ; 97(2): 372-82, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27145612

RESUMEN

Winter climate is expected to change under future climate scenarios, yet the majority of winter ecology research is focused in cold-climate ecosystems. In many temperate systems, it is unclear how winter climate relates to biotic responses during the growing season. The objective of this study was to examine how winter weather relates to plant and animal communities in a variety of terrestrial ecosystems ranging from warm deserts to alpine tundra. Specifically, we examined the association between winter weather and plant phenology, plant species richness, consumer abundance, and consumer richness in 11 terrestrial ecosystems associated with the U.S. Long-Term Ecological Research (LTER) Network. To varying degrees, winter precipitation and temperature were correlated with all biotic response variables. Bud break was tightly aligned with end of winter temperatures. For half the sites, winter weather was a better predictor of plant species richness than growing season weather. Warmer winters were correlated with lower consumer abundances in both temperate and alpine systems. Our findings suggest winter weather may have a strong influence on biotic activity during the growing season and should be considered in future studies investigating the effects of climate change on both alpine and temperate systems.


Asunto(s)
Clima , Ecosistema , Estaciones del Año , Tiempo (Meteorología) , Animales , Temperatura , Estados Unidos
12.
Environ Pollut ; 212: 433-439, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26914093

RESUMEN

Urban areas are the dominant source of U.S. fossil fuel carbon dioxide (FFCO2) emissions. In the absence of binding international treaties or decisive U.S. federal policy for greenhouse gas regulation, cities have also become leaders in greenhouse gas reduction efforts through climate action plans. These plans focus on anthropogenic carbon flows only, however, ignoring a potentially substantial contribution to atmospheric carbon dioxide (CO2) concentrations from biological respiration. Our aim was to measure the contribution of CO2 efflux from soil respiration to atmospheric CO2 fluxes using an automated CO2 efflux system and to use these measurements to model urban soil CO2 efflux across an urban area. We find that growing season soil respiration is dramatically enhanced in urban areas and represents levels of CO2 efflux of up to 72% of FFCO2 within greater Boston's residential areas, and that soils in urban forests, lawns, and landscaped cover types emit 2.62 ± 0.15, 4.49 ± 0.14, and 6.73 ± 0.26 µmolCO2 m(-2) s(-1), respectively, during the growing season. These rates represent up to 2.2 times greater soil respiration than rates found in nearby rural ecosystems in central Massachusetts (MA), a potential consequence of imported carbon amendments, such as mulch, within a general regime of landowner management. As the scientific community moves rapidly towards monitoring, reporting, and verification of CO2 emissions using ground based approaches and remotely-sensed observations to measure CO2 concentrations, our results show that measurement and modeling of biogenic urban CO2 fluxes will be a critical component for verification of urban climate action plans.


Asunto(s)
Ciclo del Carbono , Dióxido de Carbono/análisis , Monitoreo del Ambiente , Efecto Invernadero , Suelo/química , Boston/epidemiología , Ciudades , Clima , Ecosistema , Bosques , Combustibles Fósiles , Humanos , Modelos Teóricos , Estaciones del Año , Estados Unidos/epidemiología
13.
Sci Total Environ ; 545-546: 512-24, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26760272

RESUMEN

Expansion of human settlements is an important driver of global environmental change that causes land use and land cover change (LULCC) and alters the biophysical nature of the landscape and climate. We use the state of Massachusetts, United States (U.S.) to present a novel approach to quantifying the effects of projected expansion of human settlements on the biophysical nature of the landscape. We integrate nationally available datasets with the U.S. Environmental Protection Agency's Integrated Climate and Land Use Scenarios model to model albedo and C storage and uptake by forests and vegetation within human settlements. Our results indicate a 4.4 to 14% decline in forest cover and a 35 to 40% increase in developed land between 2005 and 2050, with large spatial variability. LULCC is projected to reduce rates of forest C sequestration, but our results suggest that vegetation within human settlements has the potential to offset a substantial proportion of the decline in the forest C sink and may comprise up to 35% of the terrestrial C sink by 2050. Changes in albedo and terrestrial C fluxes are expected to result in a global warming potential (GWP) of +0.13 Mg CO2-C-equivalence ha(-1)year(-1) under the baseline trajectory, which is equivalent to 17% of the projected increase in fossil fuel emissions. Changes in terrestrial C fluxes are generally the most important driver of the increase in GWP, but albedo change becomes an increasingly important component where housing densities are higher. Expansion of human settlements is the new face of LULCC and our results indicate that when quantifying the biophysical response it is essential to consider C uptake by vegetation within human settlements and the spatial variability in the influence of C fluxes and albedo on changes in GWP.


Asunto(s)
Cambio Climático , Calentamiento Global , Crecimiento Demográfico , Conservación de los Recursos Naturales , Combustibles Fósiles , Humanos , Massachusetts , Modelos Teóricos
14.
PLoS One ; 10(8): e0136237, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26302444

RESUMEN

Urban areas are expanding, changing the structure and productivity of landscapes. While some urban areas have been shown to hold substantial biomass, the productivity of these systems is largely unknown. We assessed how conversion from forest to urban land uses affected both biomass structure and productivity across eastern Massachusetts. We found that urban land uses held less than half the biomass of adjacent forest expanses with a plot level mean biomass density of 33.5 ± 8.0 Mg C ha(-1). As the intensity of urban development increased, the canopy cover, stem density, and biomass decreased. Analysis of Quercus rubra tree cores showed that tree-level basal area increment nearly doubled following development, increasing from 17.1 ± 3.0 to 35.8 ± 4.7 cm(2) yr(-1). Scaling the observed stem densities and growth rates within developed areas suggests an aboveground biomass growth rate of 1.8 ± 0.4 Mg C ha(-1) yr(-1), a growth rate comparable to nearby, intact forests. The contrasting high growth rates and lower biomass pools within urban areas suggest a highly dynamic ecosystem with rapid turnover. As global urban extent continues to grow, cities consider climate mitigation options, and as the verification of net greenhouse gas emissions emerges as critical for policy, quantifying the role of urban vegetation in regional-to-global carbon budgets will become ever more important.


Asunto(s)
Ecosistema , Bosques , Árboles/crecimiento & desarrollo , Remodelación Urbana , Carbono/metabolismo , Monitoreo del Ambiente , Humanos , Massachusetts
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...