Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Quant Imaging Med Surg ; 14(3): 2580-2589, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38545076

RESUMEN

Background: Imaging of peritoneal malignancies using conventional cross-sectional imaging is challenging, but accurate assessment of peritoneal disease burden could guide better selection for definitive surgery. Here we demonstrate feasibility of high-resolution, high-contrast magnetic resonance imaging (MRI) of peritoneal mesothelioma and explore optimal timing for delayed post-contrast imaging. Methods: Prospective data from inpatients with malignant peritoneal mesothelioma (MPM), imaged with a novel MRI protocol, were analyzed. The new sequences augmenting the clinical protocol were (I) pre-contrast coronal high-resolution T2-weighted single-shot fast spin echo (COR hr T2w SSH FSE) of abdomen and pelvis; and (II) post-contrast coronal high-resolution three-dimensional (3D) T1-weighted modified Dixon (COR hr T1w mDIXON) of abdomen, acquired at five delay times, up to 20 min after administration of a double dose of contrast agent. Quantitative analysis of contrast enhancement was performed using linear regression applied to normalized signal in lesion regions of interest (ROIs). Qualitative analysis was performed by three blinded radiologists. Results: MRI exams from 14 participants (age: mean ± standard deviation, 60±12 years; 71% male) were analyzed. The rate of lesion contrast enhancement was strongly correlated with tumor grade (cumulative nuclear score) (r=-0.65, P<0.02), with 'early' delayed phase (12 min post-contrast) and 'late' delayed phase (19 min post-contrast) performing better for higher grade and lower grade tumors, respectively, in agreement with qualitative scoring of image contrast. Conclusions: High-resolution, high-contrast MRI with extended post-contrast imaging is a viable modality for imaging peritoneal mesothelioma. Multiple, extended (up to 20 min post-contrast) delayed phases are necessary for optimal imaging of peritoneal mesothelioma, depending on the grade of disease.

2.
Med Phys ; 51(4): 2871-2881, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38436473

RESUMEN

BACKGROUND: Dual-energy CT (DECT) systems provide valuable material-specific information by simultaneously acquiring two spectral measurements, resulting in superior image quality and contrast-to-noise ratio (CNR) while reducing radiation exposure and contrast agent usage. The selection of DECT scan parameters, including x-ray tube settings and fluence, is critical for the stability of the reconstruction process and hence the overall image quality. PURPOSE: The goal of this study is to propose a systematic theoretical method for determining the optimal DECT parameters for minimal noise and maximum CNR in virtual monochromatic images (VMIs) for fixed subject size and total radiation dose. METHODS: The noise propagation in the process of projection based material estimation from DECT measurements is analyzed. The main components of the study are the mean pixel variances for the sinogram and monochromatic image and the CNR, which were shown to depend on the Jacobian matrix of the sinograms-to-DECT measurements map. Analytic estimates for the mean sinogram and monochromatic image pixel variances and the CNR as functions of tube potentials, fluence, and VMI energy are derived, and then used in a virtual phantom experiment as an objective function for optimizing the tube settings and VMI energy to minimize the image noise and maximize the CNR. RESULTS: It was shown that DECT measurements corresponding to kV settings that maximize the square of Jacobian determinant values over a domain of interest lead to improved stability of basis material reconstructions. Instances of non-uniqueness in DECT were addressed, focusing on scenarios where the Jacobian determinant becomes zero within the domain of interest despite significant spectral separation. The presence of non-uniqueness can lead to singular solutions during the inversion of sinograms-to-DECT measurements, underscoring the importance of considering uniqueness properties in parameter selection. Additionally, the optimal VMI energy and tube potentials for maximal CNR was determined. When the x-ray beam filter material was fixed at 2 mm of aluminum and the photon fluence for low and high kV scans were considered equal, the tube potential pair of 60/120 kV led to the maximal iodine CNR in the VMI at 53 keV. CONCLUSIONS: Optimizing DECT scan parameters to maximize the CNR can be done in a systematic way. Also, choosing the parameters that maximize the Jacobian determinant over the set of expected line integrals leads to more stable reconstructions due to the reduced amplification of the measurement noise. Since the values of the Jacobian determinant depend strongly on the imaging task, careful consideration of all of the relevant factors is needed when implementing the proposed framework.


Asunto(s)
Yodo , Imagen Radiográfica por Emisión de Doble Fotón , Tomografía Computarizada por Rayos X/métodos , Relación Señal-Ruido , Fantasmas de Imagen , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Modelos Teóricos , Imagen Radiográfica por Emisión de Doble Fotón/métodos
3.
ArXiv ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38410653

RESUMEN

Deep neural networks used for reconstructing sparse-view CT data are typically trained by minimizing a pixel-wise mean-squared error or similar loss function over a set of training images. However, networks trained with such pixel-wise losses are prone to wipe out small, low-contrast features that are critical for screening and diagnosis. To remedy this issue, we introduce a novel training loss inspired by the model observer framework to enhance the detectability of weak signals in the reconstructions. We evaluate our approach on the reconstruction of synthetic sparse-view breast CT data, and demonstrate an improvement in signal detectability with the proposed loss.

4.
Med Phys ; 48(10): 6312-6323, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34169538

RESUMEN

Many useful image quality metrics for evaluating linear image reconstruction techniques do not apply to or are difficult to interpret for nonlinear image reconstruction. The vast majority of metrics employed for evaluating nonlinear image reconstruction are based on some form of global image fidelity, such as image root mean square error (RMSE). Use of such metrics can lead to overregularization in the sense that they can favor removal of subtle details in the image. To address this shortcoming, we develop an image quality metric based on signal detection that serves as a surrogate to the qualitative loss of fine image details. The metric is demonstrated in the context of a breast CT simulation, where different equal-dose configurations are considered. The configurations differ in the number of projections acquired. Image reconstruction is performed with a nonlinear algorithm based on total variation constrained least-squares (TV-LSQ). The resulting images are studied as a function of three parameters: number of views acquired, total variation constraint value, and number of iterations. The images are evaluated visually, with image RMSE, and with the proposed signal-detection-based metric. The latter uses a small signal, and computes detectability in the sinogram and in the reconstructed image. Loss of signal detectability through the image reconstruction process is taken as a quantitative measure of loss of fine details in the image. Loss of signal detectability is seen to correlate well with the blocky or patchy appearance due to overregularization with TV-LSQ, and this trend runs counter to the image RMSE metric, which tends to favor the over-regularized images. The proposed signal detection-based metric provides an image quality assessment that is complimentary to that of image RMSE. Using the two metrics in concert may yield a useful prescription for determining CT algorithm and configuration parameters when nonlinear image reconstruction is used.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Tomografía Computarizada por Rayos X , Algoritmos , Análisis de los Mínimos Cuadrados , Fantasmas de Imagen
5.
J Med Imaging (Bellingham) ; 1(3): 031007, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25685824

RESUMEN

One of the challenges for iterative image reconstruction (IIR) is that such algorithms solve an imaging model implicitly, requiring a complete representation of the scanned subject within the viewing domain of the scanner. This requirement can place a prohibitively high computational burden for IIR applied to x-ray computed tomography (CT), especially when high-resolution tomographic volumes are required. In this work, we aim to develop an IIR algorithm for direct region-of-interest (ROI) image reconstruction. The proposed class of IIR algorithms is based on an optimization problem that incorporates a data fidelity term, which compares a derivative of the estimated data with the available projection data. In order to characterize this optimization problem, we apply it to computer-simulated two-dimensional fan-beam CT data, using both ideal noiseless data and realistic data containing a level of noise comparable to that of the breast CT application. The proposed method is demonstrated for both complete field-of-view and ROI imaging. To demonstrate the potential utility of the proposed ROI imaging method, it is applied to actual CT scanner data.

6.
Med Phys ; 36(11): 4920-32, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19994501

RESUMEN

PURPOSE: The authors develop a practical, iterative algorithm for image-reconstruction in undersampled tomographic systems, such as digital breast tomosynthesis (DBT). METHODS: The algorithm controls image regularity by minimizing the image total p variation (TpV), a function that reduces to the total variation when p = 1.0 or the image roughness when p = 2.0. Constraints on the image, such as image positivity and estimated projection-data tolerance, are enforced by projection onto convex sets. The fact that the tomographic system is undersampled translates to the mathematical property that many widely varied resultant volumes may correspond to a given data tolerance. Thus the application of image regularity serves two purposes: (1) Reduction in the number of resultant volumes out of those allowed by fixing the data tolerance, finding the minimum image TpV for fixed data tolerance, and (2) traditional regularization, sacrificing data fidelity for higher image regularity. The present algorithm allows for this dual role of image regularity in undersampled tomography. RESULTS: The proposed image-reconstruction algorithm is applied to three clinical DBT data sets. The DBT cases include one with microcalcifications and two with masses. CONCLUSIONS: Results indicate that there may be a substantial advantage in using the present image-reconstruction algorithm for microcalcification imaging.


Asunto(s)
Algoritmos , Calcinosis/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Mamografía/métodos , Tomografía por Rayos X/métodos , Femenino , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...