Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(50): e2212564119, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36475947

RESUMEN

We engineered and produced an ion channel blocking peptibody, that targets the acetylcholine-activated inwardly rectifying potassium current (IKACh). Peptibodies are chimeric proteins generated by fusing a biologically active peptide with the fragment crystallizable (Fc) region of the human immunoglobulin G (IgG). The IKACh blocking peptibody was engineered as a fusion between the human IgG1 Fc fragment and the IKACh inhibitor tertiapinQ (TP), a 21-amino acid synthetic peptidotoxin, originally isolated from the European honey bee venom. The peptibody was purified from the culture supernatant of human embryonic kidney (HEK) cells transfected with the peptibody construct. We tested the hypothesis that the bioengineered peptibody is bioactive and a potent blocker of IKACh. In HEK cells transfected with Kir3.1 and Kir3.4, the molecular correlates of IKACh, patch clamp showed that the peptibody was ~300-fold more potent than TP. Molecular dynamics simulations suggested that the increased potency could be due to an increased stabilization of the complex formed by peptibody-Kir3.1/3.4 channels compared to tertiapin-Kir3.1/3.4 channels. In isolated mouse myocytes, the peptibody blocked carbachol (Cch)-activated IKACh in atrial cells but did not affect the potassium inwardly rectifying background current in ventricular myocytes. In anesthetized mice, the peptibody abrogated the bradycardic effects of intraperitoneal Cch injection. Moreover, in aged mice, the peptibody reduced the inducibility of atrial fibrillation, likely via blocking constitutively active IKACh. Bioengineered anti-ion channel peptibodies can be powerful and highly potent ion channel blockers, with the potential to guide the development of modulators of ion channels or antiarrhythmic modalities.


Asunto(s)
Potasio , Humanos , Animales , Abejas , Ratones
2.
Cell Signal ; 100: 110475, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36150420

RESUMEN

Cigarette smoking (CS) is a major cause of cardiovascular diseases. Smokers are at a significantly higher risk for developing atrial fibrillation (AF), a dangerous and abnormal heart rhythm. In the US, 15.5% of adults are current smokers, and it is becoming clear that CS is an independent risk factor for AF, but a detailed mechanistic understanding of how CS contributes to the molecular patho-electrophysiology of AF remains elusive. We investigated if CS related AF is in part mediated through a mechanism that depends on the cardiac acetylcholine activated inward rectifier potassium current (IKACh). We tested the hypothesis that CS increases IKACh via phosphatidylinositol 4-phosphate 5-kinase alpha (PIP5K) and ADP ribosylation factor 6 (Arf6) signaling, leading to AF perpetuation. In vivo inducibility of AF was assessed in mice exposed to CS for 8 weeks. AF duration was increased in CS exposed mice, and TertiapinQ, an IKACh blocker prevented AF development in CS exposed mice. In HEK293 cells stably transfected with Kir3.1 and Kir3.4, the molecular correlates of IKACh, CS exposure increased the expression of the Kir3.1 and Kir3.4 proteins at the cell surface, activated Arf6 and increased the IKACh current. Inhibition of PIP5K, or of Kir3.1/Kir3.4 trafficking via Arf6 abrogated the CS effects on IKACh. Cigarette smoke modifies the atrial electrophysiological substrate, leading to arrhythmogenesis, in part, through IKACh activation via an Arf6/PIP5K dependent pathway.

3.
Cells ; 10(5)2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-34068960

RESUMEN

In the heart, mitochondrial homeostasis is critical for sustaining normal function and optimal responses to metabolic and environmental stressors. Mitochondrial fusion and fission are thought to be necessary for maintaining a robust population of mitochondria, and disruptions in mitochondrial fission and/or fusion can lead to cellular dysfunction. The dynamin-related protein (DRP1) is an important mediator of mitochondrial fission. In this study, we investigated the direct effects of the micronutrient retinoid all-trans retinoic acid (ATRA) on the mitochondrial structure in vivo and in vitro using Western blot, confocal, and transmission electron microscopy, as well as mitochondrial network quantification using stochastic modeling. Our results showed that ATRA increases DRP1 protein levels, increases the localization of DRP1 to mitochondria in isolated mitochondrial preparations. Our results also suggested that ATRA remodels the mitochondrial ultrastructure where the mitochondrial area and perimeter were decreased and the circularity was increased. Microscopically, mitochondrial network remodeling is driven by an increased rate of fission over fusion events in ATRA, as suggested by our numerical modeling. In conclusion, ATRA results in a pharmacologically mediated increase in the DRP1 protein. It also results in the modulation of cardiac mitochondria by promoting fission events, altering the mitochondrial network, and modifying the ultrastructure of mitochondria in the heart.


Asunto(s)
Dinaminas/metabolismo , Mitocondrias Cardíacas/metabolismo , Proteínas Mitocondriales/metabolismo , Miocardio/metabolismo , Tretinoina/metabolismo , Animales , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Dinámicas Mitocondriales
4.
Am J Physiol Heart Circ Physiol ; 320(1): H133-H143, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33216635

RESUMEN

The usage of flavored electronic nicotine delivery systems (ENDS) is popular, specifically in the teen and young adult age-groups. The possible cardiac toxicity of the flavoring aspect of ENDS is largely unknown. Vaping, a form of electronic nicotine delivery, uses "e-liquid" to generate "e-vapor," an aerosolized mixture of nicotine and/or flavors. We report our investigation into the cardiotoxic effects of flavored e-liquids. E-vapors containing flavoring aldehydes such as vanillin and cinnamaldehyde, as indicated by mass spectrometry, were more toxic in HL-1 cardiomyocytes than fruit-flavored e-vapor. Exposure of human induced pluripotent stem cell-derived cardiomyocytes to cinnamaldehyde or vanillin-flavored e-vapor affected the beating frequency and prolonged the field potential duration of these cells more than fruit-flavored e-vapor. In addition, vanillin aldehyde-flavored e-vapor reduced the human ether-à-go-go-related gene (hERG)-encoded potassium current in transfected human embryonic kidney cells. In mice, inhalation exposure to vanillin aldehyde-flavored e-vapor for 10 wk caused increased sympathetic predominance in heart rate variability measurements. In vivo inducible ventricular tachycardia was significantly longer, and in optical mapping, the magnitude of ventricular action potential duration alternans was significantly larger in the vanillin aldehyde-flavored e-vapor-exposed mice than in controls. We conclude that the widely popular flavored ENDS are not harm free, and they have a potential for cardiac harm. More studies are needed to further assess their cardiac safety profile and long-term health effects.NEW & NOTEWORTHY The use of electronic nicotine delivery systems (ENDS) is not harm free. It is not known whether ENDS negatively affect cardiac electrophysiological function. Our study in cell lines and in mice shows that ENDS can compromise cardiac electrophysiology, leading to action potential instability and inducible ventricular arrhythmias. Further investigations are necessary to assess the long-term cardiac safety profile of ENDS products in humans and to better understand how individual components of ENDS affect cardiac toxicity.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Aromatizantes/toxicidad , Frecuencia Cardíaca/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Nicotina/toxicidad , Agonistas Nicotínicos/toxicidad , Taquicardia Ventricular/inducido químicamente , Vapeo/efectos adversos , Potenciales de Acción/efectos de los fármacos , Administración por Inhalación , Animales , Cardiotoxicidad , Canal de Potasio ERG1/metabolismo , Femenino , Aromatizantes/administración & dosificación , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Nicotina/administración & dosificación , Agonistas Nicotínicos/administración & dosificación , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatología , Factores de Tiempo
5.
Front Pharmacol ; 10: 1392, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31827438

RESUMEN

In clinical practice, reducing the burden of persistent atrial fibrillation by pharmacological means is challenging. We explored if blocking the background and the acetylcholine-activated inward rectifier potassium currents (IK1 and IKACh) could be antiarrhythmic in persistent atrial fibrillation. We thus tested the hypothesis that blocking IK1 and IKACh with chloroquine decreases the burden of persistent atrial fibrillation. We used patch clamp to determine the IC50 of IK1 and IKACh block by chloroquine and molecular modeling to simulate the interaction between chloroquine and Kir2.1 and Kir3.1, the molecular correlates of IK1 and IKACh. We then tested, as a proof of concept, if oral chloroquine administration to a patient with persistent atrial fibrillation can decrease the arrhythmia burden. We also simulated the effects of chloroquine in a 3D model of human atria with persistent atrial fibrillation. In patch clamp the IC50 of IK1 block by chloroquine was similar to that of IKACh. A 14-day regimen of oral chloroquine significantly decreased the burden of persistent atrial fibrillation in a patient. Mathematical simulations of persistent atrial fibrillation in a 3D model of human atria suggested that chloroquine prolonged the action potential duration, leading to failure of reentrant excitation, and the subsequent termination of the arrhythmia. The combined block of IK1 and IKACh can be a targeted therapeutic strategy for persistent atrial fibrillation.

6.
Clin Psychol Psychother ; 26(1): 135-145, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30251401

RESUMEN

BACKGROUND: The therapeutic alliance is an important factor in psychotherapy, affecting both therapy processes and outcome. Therapy transfers may impair the quality of the therapeutic alliance and increase symptom severity. The aim of this study is to investigate the impact of patient transfers in cognitive behavioural therapy on alliance and symptoms in the sessions after the transfer. METHOD: Patient- and therapist-rated therapeutic alliance and patient-reported symptom severity were measured session-to-session. Differences in the levels of alliance and symptom severity before (i.e., with the original therapist) and after (i.e., with the new therapist) the transfer session were analysed. The development of alliance and symptom severity was explored using multilevel growth models. RESULTS: A significant drop in the alliance was found after the transfer, whereas no differences were found with regard to symptom severity. After an average of 2.93 sessions, the therapeutic alliance as rated by patients reached pretransfer levels, whereas it took an average of 5.05 sessions for therapist-rated alliance levels to be at a similar level as before the transfer. Inter-individual differences were found with regard to the development of the therapeutic alliance over time. CONCLUSIONS: Therapy transfers have no long lasting negative effects on either symptom impairment or the therapeutic alliance.


Asunto(s)
Terapia Cognitivo-Conductual , Trastornos Mentales/psicología , Trastornos Mentales/terapia , Pase de Guardia , Alianza Terapéutica , Adulto , Femenino , Alemania , Humanos , Estudios Longitudinales , Masculino , Índice de Severidad de la Enfermedad , Resultado del Tratamiento
7.
FASEB J ; 32(4): 1778-1793, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29162702

RESUMEN

The acetylcholine-activated inward rectifier potassium current ( IKACh) is constitutively active in persistent atrial fibrillation (AF). We tested the hypothesis that the blocking of IKACh with the small molecule chloroquine terminates persistent AF. We used a sheep model of tachypacing-induced, persistent AF, molecular modeling, electrophysiology, and structural biology approaches. The 50% inhibition/inhibitory concentration of IKACh block with chloroquine, measured by patch clamp, was 1 µM. In optical mapping of sheep hearts with persistent AF, 1 µM chloroquine restored sinus rhythm. Molecular modeling suggested that chloroquine blocked the passage of a hydrated potassium ion through the intracellular domain of Kir3.1 (a molecular correlate of IKACh) by interacting with residues D260 and F255, in proximity to I228, Q227, and L299. 1H 15N heteronuclear single-quantum correlation of purified Kir3.1 intracellular domain confirmed the modeling results. F255, I228, Q227, and L299 underwent significant chemical-shift perturbations upon drug binding. We then crystallized and solved a 2.5 Å X-ray structure of Kir3.1 with F255A mutation. Modeling of chloroquine binding to the mutant channel suggested that the drug's binding to the pore becomes off centered, reducing its ability to block a hydrated potassium ion. Patch clamp validated the structural and modeling data, where the F255A and D260A mutations significantly reduced IKACh block by chloroquine. With the use of numerical and structural biology approaches, we elucidated the details of how a small molecule could block an ion channel and exert antiarrhythmic effects. Chloroquine binds the IKACh channel at a site formed by specific amino acids in the ion-permeation pathway, leading to decreased IKACh and the subsequent termination of AF.-Takemoto, Y., Slough, D. P., Meinke, G., Katnik, C., Graziano, Z. A., Chidipi, B., Reiser, M., Alhadidy, M. M., Ramirez, R., Salvador-Montañés, O., Ennis, S., Guerrero-Serna, G., Haburcak, M., Diehl, C., Cuevas, J., Jalife, J., Bohm, A., Lin,Y.-S., Noujaim, S. F. Structural basis for the antiarrhythmic blockade of a potassium channel with a small molecule.


Asunto(s)
Antiarrítmicos/farmacología , Cloroquina/farmacología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/química , Frecuencia Cardíaca/efectos de los fármacos , Simulación del Acoplamiento Molecular , Bloqueadores de los Canales de Potasio/farmacología , Sustitución de Aminoácidos , Animales , Antiarrítmicos/química , Sitios de Unión , Cloroquina/química , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Células HEK293 , Humanos , Masculino , Bloqueadores de los Canales de Potasio/química , Unión Proteica , Ovinos
8.
Biotechniques ; 59(4): 201-2, 204, 206-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26458548

RESUMEN

The clustered regularly interspaced short palindromic repeat (CRISPR) gene editing technique, based on the non-homologous end-joining (NHEJ) repair pathway, has been used to generate gene knock-outs with variable sizes of small insertion/deletions with high efficiency. More precise genome editing, either the insertion or deletion of a desired fragment, can be done by combining the homology-directed-repair (HDR) pathway with CRISPR cleavage. However, HDR-mediated gene knock-in experiments are typically inefficient, and there have been no reports of successful gene knock-in with DNA fragments larger than 4 kb. Here, we describe the targeted insertion of large DNA fragments (7.4 and 5.8 kb) into the genomes of mouse embryonic stem (ES) cells and zygotes, respectively, using the CRISPR/HDR technique without NHEJ inhibitors. Our data show that CRISPR/HDR without NHEJ inhibitors can result in highly efficient gene knock-in, equivalent to CRISPR/HDR with NHEJ inhibitors. Although NHEJ is the dominant repair pathway associated with CRISPR-mediated double-strand breaks (DSBs), and biallelic gene knock-ins are common, NHEJ and biallelic gene knock-ins were not detected. Our results demonstrate that efficient targeted insertion of large DNA fragments without NHEJ inhibitors is possible, a result that should stimulate interest in understanding the mechanisms of high efficiency CRISPR targeting in general.


Asunto(s)
Sistemas CRISPR-Cas/genética , Reparación del ADN por Unión de Extremidades/genética , ADN/genética , Reparación del ADN por Recombinación/genética , Animales , Técnicas de Sustitución del Gen , Ingeniería Genética , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Edición de ARN/genética , Cigoto/metabolismo
9.
Biotechniques ; 58(4): 161-70, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25861928

RESUMEN

Restriction enzymes have two major limitations for cloning: they cannot cleave at any desired location in a DNA sequence and may not cleave uniquely within a DNA sequence. In contrast, the clustered regularly interspaced short palindromic repeat (CRISPR)-associated enzyme 9 (Cas9), when coupled with single guide RNAs (sgRNA), has been used in vivo to cleave the genomes of many species at a single site, enabling generation of mutated cell lines and animals. The Cas9/sgRNA complex recognizes a 17-20 base target site, which can be of any sequence as long as it is located 5' of the protospacer adjacent motif (PAM; sequence 5'-NRG, where R = G or A). Thus, it can be programmed to cleave almost anywhere with a stringency higher than that of one cleavage in a sequence of human genome size. Here, the Cas9 enzyme and a specific sgRNA were used to linearize a 22 kb plasmid in vitro. A DNA fragment was then inserted into the linearized vector seamlessly through Gibson assembly. Our technique can be used to directly, and seamlessly, clone fragments into vectors of any size as well as to modify existing constructs where no other methods are available.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Asociadas a CRISPR/química , Sistemas CRISPR-Cas , Clonación Molecular/métodos , División del ADN , Endonucleasas/química , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteína 9 Asociada a CRISPR , Genoma , Ratones , Plásmidos/genética , ARN Guía de Kinetoplastida/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...