Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Clin Inform ; 15(2): 404-413, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38777326

RESUMEN

OBJECTIVES: There is limited research on suicide risk screening (SRS) among head and neck cancer (HNC) patients, a population at increased risk for suicide. To address this gap, this single-site mixed methods study assessed oncology professionals' perspectives about the feasibility, acceptability, and appropriateness of an electronic SRS program that was implemented as a part of routine care for HNC patients. METHODS: Staff who assisted with SRS implementation completed (e.g., nurses, medical assistants, advanced practice providers, physicians, social workers) a one-time survey (N = 29) and interview (N = 25). Quantitative outcomes were assessed using previously validated feasibility, acceptability, and appropriateness measures. Additional qualitative data were collected to provide context for interpreting the scores. RESULTS: Nurses and medical assistants, who were directly responsible for implementing SRS, reported low feasibility, acceptability, and appropriateness, compared with other team members (e.g., physicians, social workers, advanced practice providers). Team members identified potential improvements needed to optimize SRS, such as hiring additional staff, improving staff training, providing different modalities for screening completion among individuals with disabilities, and revising the patient-reported outcomes to improve suicide risk prediction. CONCLUSION: Staff perspectives about implementing SRS as a part of routine cancer care for HNC patients varied widely. Before screening can be implemented on a larger scale for HNC and other cancer patients, additional implementation strategies may be needed that optimize workflow and reduce staff burden, such as staff training, multiple modalities for completion, and refined tools for identifying which patients are at greatest risk for suicide.


Asunto(s)
Neoplasias de Cabeza y Cuello , Humanos , Neoplasias de Cabeza y Cuello/diagnóstico , Medición de Riesgo/métodos , Suicidio , Tamizaje Masivo , Prevención del Suicidio , Masculino , Femenino
2.
Cancer Med ; 12(18): 19033-19046, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37596773

RESUMEN

BACKGROUND: Patient-reported data can improve quality of healthcare delivery and patient outcomes. Moffitt Cancer Center ("Moffitt") administers the Electronic Patient Questionnaire (EPQ) to collect data on demographics, including sexual orientation and gender identity (SOGI), medical history, cancer risk factors, and quality of life. Here we investigated differences in EPQ completion by demographic and cancer characteristics. METHODS: An analysis including 146,142 new adult patients at Moffitt in 2009-2020 was conducted using scheduling, EPQ and cancer registry data. EPQ completion was described by calendar year and demographics. Logistic regression was used to estimate associations between demographic/cancer characteristics and EPQ completion. More recently collected information on SOGI were described. RESULTS: Patient portal usage (81%) and EPQ completion rates (79%) were consistently high since 2014. Among patients in the cancer registry, females were more likely to complete the EPQ than males (odds ratio [OR] = 1.17, 95% confidence interval [CI] = 1.14-1.20). Patients ages 18-64 years were more likely to complete the EPQ than patients aged ≥65. Lower EPQ completion rates were observed among Black or African American patients (OR = 0.59, 95% CI = 0.56-0.63) as compared to Whites and among patients whose preferred language was Spanish (OR = 0.40, 95% CI = 0.36-0.44) or another language as compared to English. Furthermore, patients with localized (OR = 1.16, 95% CI = 1.12-1.19) or regional (OR = 1.16, 95% CI = 1.12-1.20) cancer were more likely to complete the EPQ compared to those with metastatic disease. Less than 3% of patients self-identified as being lesbian, gay, or bisexual and <0.1% self-identified as transgender, genderqueer, or other. CONCLUSIONS: EPQ completion rates differed across demographics highlighting opportunities for targeted process improvement. Healthcare organizations should evaluate data acquisition methods to identify potential disparities in data completeness that can impact quality of clinical care and generalizability of self-reported data.


Asunto(s)
Identidad de Género , Neoplasias , Adulto , Humanos , Masculino , Femenino , Calidad de Vida , Conducta Sexual , Neoplasias/epidemiología , Neoplasias/terapia , Medición de Resultados Informados por el Paciente
3.
J Med Internet Res ; 24(3): e27210, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35319481

RESUMEN

BACKGROUND: Information in pathology reports is critical for cancer care. Natural language processing (NLP) systems used to extract information from pathology reports are often narrow in scope or require extensive tuning. Consequently, there is growing interest in automated deep learning approaches. A powerful new NLP algorithm, bidirectional encoder representations from transformers (BERT), was published in late 2018. BERT set new performance standards on tasks as diverse as question answering, named entity recognition, speech recognition, and more. OBJECTIVE: The aim of this study is to develop a BERT-based system to automatically extract detailed tumor site and histology information from free-text oncological pathology reports. METHODS: We pursued three specific aims: extract accurate tumor site and histology descriptions from free-text pathology reports, accommodate the diverse terminology used to indicate the same pathology, and provide accurate standardized tumor site and histology codes for use by downstream applications. We first trained a base language model to comprehend the technical language in pathology reports. This involved unsupervised learning on a training corpus of 275,605 electronic pathology reports from 164,531 unique patients that included 121 million words. Next, we trained a question-and-answer (Q&A) model that connects a Q&A layer to the base pathology language model to answer pathology questions. Our Q&A system was designed to search for the answers to two predefined questions in each pathology report: What organ contains the tumor? and What is the kind of tumor or carcinoma? This involved supervised training on 8197 pathology reports, each with ground truth answers to these 2 questions determined by certified tumor registrars. The data set included 214 tumor sites and 193 histologies. The tumor site and histology phrases extracted by the Q&A model were used to predict International Classification of Diseases for Oncology, Third Edition (ICD-O-3), site and histology codes. This involved fine-tuning two additional BERT models: one to predict site codes and another to predict histology codes. Our final system includes a network of 3 BERT-based models. We call this CancerBERT network (caBERTnet). We evaluated caBERTnet using a sequestered test data set of 2050 pathology reports with ground truth answers determined by certified tumor registrars. RESULTS: caBERTnet's accuracies for predicting group-level site and histology codes were 93.53% (1895/2026) and 97.6% (1993/2042), respectively. The top 5 accuracies for predicting fine-grained ICD-O-3 site and histology codes with 5 or more samples each in the training data set were 92.95% (1794/1930) and 96.01% (1853/1930), respectively. CONCLUSIONS: We have developed an NLP system that outperforms existing algorithms at predicting ICD-O-3 codes across an extensive range of tumor sites and histologies. Our new system could help reduce treatment delays, increase enrollment in clinical trials of new therapies, and improve patient outcomes.


Asunto(s)
Procesamiento de Lenguaje Natural , Neoplasias , Algoritmos , Humanos , Lenguaje , Oncología Médica
4.
Artículo en Inglés | MEDLINE | ID: mdl-34095711

RESUMEN

Next-generation sequencing (NGS) is rapidly expanding into routine oncology practice. Genetic variations in both the cancer and inherited genomes are informative for hereditary cancer risk, prognosis, and treatment strategies. Herein, we focus on the clinical perspective of integrating NGS results into patient care to assist with therapeutic decision making. Five key considerations are addressed for operationalization of NGS testing and application of results to patient care as follows: (1) NGS test ordering and workflow design; (2) result reporting, curation, and storage; (3) clinical consultation services that provide test interpretations and identify opportunities for molecularly guided therapy; (4) presentation of genetic information within the electronic health record; and (5) education of providers and patients. Several of these key considerations center on informatics tools that support NGS test ordering and referencing back to the results for therapeutic purposes. Clinical decision support tools embedded within the electronic health record can assist with NGS test utilization and identifying opportunities for targeted therapy including clinical trial eligibility. Challenges for project and change management in operationalizing NGS-supported, evidence-based patient care in the context of current information technology systems with appropriate clinical data standards are discussed, and solutions for overcoming barriers are provided.


Asunto(s)
Células Germinativas , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias/diagnóstico , Neoplasias/genética , Toma de Decisiones Clínicas , Humanos , Oncología Médica/métodos , Neoplasias/terapia , Pautas de la Práctica en Medicina
5.
JCO Clin Cancer Inform ; 5: 561-569, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33989014

RESUMEN

PURPOSE: The use of genomics within cancer research and clinical oncology practice has become commonplace. Efforts such as The Cancer Genome Atlas have characterized the cancer genome and suggested a wealth of targets for implementing precision medicine strategies for patients with cancer. The data produced from research studies and clinical care have many potential secondary uses beyond their originally intended purpose. Effective storage, query, retrieval, and visualization of these data are essential to create an infrastructure to enable new discoveries in cancer research. METHODS: Moffitt Cancer Center implemented a molecular data warehouse to complement the extensive enterprise clinical data warehouse (Health and Research Informatics). Seven different sequencing experiment types were included in the warehouse, with data from institutional research studies and clinical sequencing. RESULTS: The implementation of the molecular warehouse involved the close collaboration of many teams with different expertise and a use case-focused approach. Cornerstones of project success included project planning, open communication, institutional buy-in, piloting the implementation, implementing custom solutions to address specific problems, data quality improvement, and data governance, unique aspects of which are featured here. We describe our experience in selecting, configuring, and loading molecular data into the molecular data warehouse. Specifically, we developed solutions for heterogeneous genomic sequencing cohorts (many different platforms) and integration with our existing clinical data warehouse. CONCLUSION: The implementation was ultimately successful despite challenges encountered, many of which can be generalized to other research cancer centers.


Asunto(s)
Data Warehousing , Neoplasias , Genómica , Humanos , Oncología Médica , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...