Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38929026

RESUMEN

The effect of airborne exposure on the eye surface is an area in need of exploration, particularly in light of the increasing number of incidents occurring in both civilian and military settings. In this study, in silico methods based on a platform comprising a portfolio of software applications and a technology ecosystem are used to test potential surface ocular toxicity in data presented from Iraqi burn pits and the East Palestine, Ohio, train derailment. The purpose of this analysis is to gain a better understanding of the long-term impact of such an exposure to the ocular surface and the manifestation of surface irritation, including dry eye disease. In silico methods were used to determine ocular irritation to chemical compounds. A list of such chemicals was introduced from a number of publicly available sources for burn pits and train derailment. The results demonstrated high ocular irritation scores for some chemicals present in these exposure events. Such an analysis is designed to provide guidance related to the needed ophthalmologic care and follow-up in individuals who have been in proximity to burn pits or the train derailment and those who will experience future toxic exposure.


Asunto(s)
Exposición a Riesgos Ambientales , Humanos , Ohio , Irak , Ojo/efectos de los fármacos , Irritantes/toxicidad , Contaminantes Atmosféricos/toxicidad , Simulación por Computador
3.
J Clin Med ; 13(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38610646

RESUMEN

Chronic kidney disease (CKD) is a slowly progressive condition characterized by decreased kidney function, tubular injury, oxidative stress, and inflammation. CKD is a leading global health burden that is asymptomatic in early stages but can ultimately cause kidney failure. Its etiology is complex and involves dysregulated signaling pathways that lead to fibrosis. Transforming growth factor (TGF)-ß is a central mediator in promoting transdifferentiation of polarized renal tubular epithelial cells into mesenchymal cells, resulting in irreversible kidney injury. While current therapies are limited, the search for more effective diagnostic and treatment modalities is intensive. Although biopsy with histology is the most accurate method of diagnosis and staging, imaging techniques such as diffusion-weighted magnetic resonance imaging and shear wave elastography ultrasound are less invasive ways to stage fibrosis. Current therapies such as renin-angiotensin blockers, mineralocorticoid receptor antagonists, and sodium/glucose cotransporter 2 inhibitors aim to delay progression. Newer antifibrotic agents that suppress the downstream inflammatory mediators involved in the fibrotic process are in clinical trials, and potential therapeutic targets that interfere with TGF-ß signaling are being explored. Small interfering RNAs and stem cell-based therapeutics are also being evaluated. Further research and clinical studies are necessary in order to avoid dialysis and kidney transplantation.

4.
Life (Basel) ; 14(2)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38398707

RESUMEN

Alzheimer's disease (AD) is a progressive and incurable neurodegenerative disorder that primarily affects persons aged 65 years and above. It causes dementia with memory loss and deterioration in thinking and language skills. AD is characterized by specific pathology resulting from the accumulation in the brain of extracellular plaques of amyloid-ß and intracellular tangles of phosphorylated tau. The importance of mitochondrial dysfunction in AD pathogenesis, while previously underrecognized, is now more and more appreciated. Mitochondria are an essential organelle involved in cellular bioenergetics and signaling pathways. Mitochondrial processes crucial for synaptic activity such as mitophagy, mitochondrial trafficking, mitochondrial fission, and mitochondrial fusion are dysregulated in the AD brain. Excess fission and fragmentation yield mitochondria with low energy production. Reduced glucose metabolism is also observed in the AD brain with a hypometabolic state, particularly in the temporo-parietal brain regions. This review addresses the multiple ways in which abnormal mitochondrial structure and function contribute to AD. Disruption of the electron transport chain and ATP production are particularly neurotoxic because brain cells have disproportionately high energy demands. In addition, oxidative stress, which is extremely damaging to nerve cells, rises dramatically with mitochondrial dyshomeostasis. Restoring mitochondrial health may be a viable approach to AD treatment.

5.
J Investig Med ; 72(1): 80-87, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37864505

RESUMEN

Dysregulated cholesterol metabolism represents an increasingly recognized feature of autism spectrum disorder (ASD). Children with fetal valproate syndrome caused by prenatal exposure to valproic acid (VPA), an anti-epileptic and mood-stabilizing drug, have a higher incidence of developing ASD. However, the role of VPA in cholesterol homeostasis in neurons and microglial cells remains unclear. Therefore, we examined the effect of VPA exposure on regulation of cholesterol homeostasis in the human microglial clone 3 (HMC3) cell line and the human neuroblastoma cell line SH-SY5Y. HMC3 and SH-SY5Y cells were each incubated in increasing concentrations of VPA, followed by quantification of mRNA and protein expression of cholesterol transporters and cholesterol metabolizing enzymes. Cholesterol efflux was evaluated using colorimetric assays. We found that VPA treatment in HMC3 cells significantly reduced ABCA1 mRNA, but increased ABCG1 and CD36 mRNA levels in a dose-dependent manner. However, ABCA1 and ABCG1 protein levels were reduced by VPA in HMC3. Furthermore, similar experiments in SH-SY5Y cells showed increased mRNA levels for ABCA1, ABCG1, CD36, and 27-hydroxylase with VPA treatment. VPA exposure significantly reduced protein levels of ABCA1 in a dose-dependent manner, but increased the ABCG1 protein level at the highest dose in SH-SY5Y cells. In addition, VPA treatment significantly increased cholesterol efflux in SH-SY5Y, but had no impact on efflux in HMC3. VPA differentially controls the expression of ABCA1 and ABCG1, but regulation at the transcriptional and translational levels are not consistent and changes in the expression of these genes do not correlate with cholesterol efflux in vitro.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Neuroblastoma , Embarazo , Femenino , Niño , Humanos , Ácido Valproico/farmacología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/genética , Trastorno del Espectro Autista/inducido químicamente , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/genética , Colesterol/metabolismo , Antígenos CD36/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
6.
Diagnostics (Basel) ; 13(21)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37958226

RESUMEN

Mild traumatic brain injury (TBI) and concussion can have serious consequences that develop over time with unpredictable levels of recovery. Millions of concussions occur yearly, and a substantial number result in lingering symptoms, loss of productivity, and lower quality of life. The diagnosis may not be made for multiple reasons, including due to patient hesitancy to undergo neuroimaging and inability of imaging to detect minimal damage. Biomarkers could fill this gap, but the time needed to send blood to a laboratory for analysis made this impractical until point-of-care measurement became available. A handheld blood test is now on the market for diagnosis of concussion based on the specific blood biomarkers glial fibrillary acidic protein (GFAP) and ubiquitin carboxyl terminal hydrolase L1 (UCH-L1). This paper discusses rapid blood biomarker assessment for mild TBI and its implications in improving prediction of TBI course, avoiding repeated head trauma, and its potential role in assessing new therapeutic options. Although we focus on the Abbott i-STAT TBI plasma test because it is the first to be FDA-cleared, our discussion applies to any comparable test systems that may become available in the future. The difficulties in changing emergency department protocols to include new technology are addressed.

7.
Life (Basel) ; 13(11)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-38004296

RESUMEN

Mitochondrial degeneration in various neurodegenerative diseases, specifically in Alzheimer's disease, involves excessive mitochondrial fission and reduced fusion, leading to cell damage. P110 is a seven-amino acid peptide that restores mitochondrial dynamics by acting as an inhibitor of mitochondrial fission. However, the role of P110 as a neuroprotective agent in AD remains unclear. Therefore, we performed cell culture studies to evaluate the neuroprotective effect of P110 on amyloid-ß accumulation and mitochondrial functioning. Human SH-SY5Y neuronal cells were incubated with 1 µM and 10 µM of P110, and Real-Time PCR and Western blot analysis were done to quantify the expression of genes pertaining to AD and neuronal health. Exposure of SH-SY5Y cells to P110 significantly increased APP mRNA levels at 1 µM, while BACE1 mRNA levels were increased at both 1 µM and 10 µM. However, protein levels of both APP and BACE1 were significantly reduced at 10 µM of P110. Further, P110 treatment significantly increased ADAM10 and Klotho protein levels at 10 µM. In addition, P110 exposure significantly increased active mitochondria and reduced ROS in live SH-SY5Y cells at both 1 µM and 10 µM concentrations. Taken together, our results indicate that P110 might be useful in attenuating amyloid-ß generation and improving neuronal health by maintaining mitochondrial function in neurons.

8.
Int J Mol Sci ; 24(19)2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37833938

RESUMEN

Although there are many biochemical methods to measure amyloid-ß (Aß)42 concentration, one of the critical issues in the study of the effects of Aß42 on the nervous system is a simple physiological measurement. The in vitro rat sciatic nerve model is employed and the nerve action potential (NAP) is quantified with different stimuli while exposed to different concentrations of Aß42. Aß42 predominantly reduces the NAP amplitude with minimal effects on other parameters except at low stimulus currents and short inter-stimulus intervals. The effects of Aß42 are significantly concentration-dependent, with a maximum reduction in NAP amplitude at a concentration of 70 nM and smaller effects on the NAP amplitude at higher and lower concentrations. However, even physiologic concentrations in the range of 70 pM did reduce the NAP amplitude. The effects of Aß42 became maximal 5-8 h after exposure and did not reverse during a 30 min washout period. The in vitro rat sciatic nerve model is sensitive to the effects of physiologic concentrations of Aß42. These experiments suggest that the effect of Aß42 is a very complex function of concentration that may be the result of amyloid-related changes in membrane properties or sodium channels.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Ratas , Animales , Péptidos beta-Amiloides/farmacología , Nervio Ciático , Modelos Biológicos , Fragmentos de Péptidos/farmacología
11.
Neurol Int ; 15(3): 821-841, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37489358

RESUMEN

SARS-CoV-2, a single-stranded RNA coronavirus, causes an illness known as coronavirus disease 2019 (COVID-19). Long-term complications are an increasing issue in patients who have been infected with COVID-19 and may be a result of viral-associated systemic and central nervous system inflammation or may arise from a virus-induced hypercoagulable state. COVID-19 may incite changes in brain function with a wide range of lingering symptoms. Patients often experience fatigue and may note brain fog, sensorimotor symptoms, and sleep disturbances. Prolonged neurological and neuropsychiatric symptoms are prevalent and can interfere substantially in everyday life, leading to a massive public health concern. The mechanistic pathways by which SARS-CoV-2 infection causes neurological sequelae are an important subject of ongoing research. Inflammation- induced blood-brain barrier permeability or viral neuro-invasion and direct nerve damage may be involved. Though the mechanisms are uncertain, the resulting symptoms have been documented from numerous patient reports and studies. This review examines the constellation and spectrum of nervous system symptoms seen in long COVID and incorporates information on the prevalence of these symptoms, contributing factors, and typical course. Although treatment options are generally lacking, potential therapeutic approaches for alleviating symptoms and improving quality of life are explored.

12.
Medicina (Kaunas) ; 59(6)2023 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-37374288

RESUMEN

As the search for modalities to cure Alzheimer's disease (AD) has made slow progress, research has now turned to innovative pathways involving neural and peripheral inflammation and neuro-regeneration. Widely used AD treatments provide only symptomatic relief without changing the disease course. The recently FDA-approved anti-amyloid drugs, aducanumab and lecanemab, have demonstrated unclear real-world efficacy with a substantial side effect profile. Interest is growing in targeting the early stages of AD before irreversible pathologic changes so that cognitive function and neuronal viability can be preserved. Neuroinflammation is a fundamental feature of AD that involves complex relationships among cerebral immune cells and pro-inflammatory cytokines, which could be altered pharmacologically by AD therapy. Here, we provide an overview of the manipulations attempted in pre-clinical experiments. These include inhibition of microglial receptors, attenuation of inflammation and enhancement of toxin-clearing autophagy. In addition, modulation of the microbiome-brain-gut axis, dietary changes, and increased mental and physical exercise are under evaluation as ways to optimize brain health. As the scientific and medical communities work together, new solutions may be on the horizon to slow or halt AD progression.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Inflamación/metabolismo , Encéfalo/patología , Citocinas/metabolismo , Cognición
13.
Vision (Basel) ; 7(2)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37092465

RESUMEN

The surface of the eye is directly exposed to the external environment, protected only by a thin tear film, and may therefore be damaged by contact with ambient particulate matter, liquids, aerosols, or vapors. In the workplace or home, the eye is subject to accidental or incidental exposure to cleaning products and pesticides. Organic matter may enter the eye and cause infection. Ocular surface damage can trigger a range of symptoms such as itch, discharge, hyperemia, photophobia, blurred vision, and foreign body sensation. Toxin exposure can be assessed clinically in multiple ways, including via measurement of tear production, slit-lamp examination, corneal staining, and conjunctival staining. At the cellular level, environmental toxins can cause oxidative damage, apoptosis of corneal and conjunctival cells, cell senescence, and impaired motility. Outcomes range from transient and reversible with complete healing to severe and sight-compromising structural changes. Classically, evaluation of tolerance and safety was carried out using live animal testing; however, new in vitro and computer-based, in silico modes are superseding the gold standard Draize test. This review examines how environmental features such as pollutants, temperature, and seasonality affect the ocular surface. Chemical burns to the eye are considered, and approaches to protect the ocular surface are detailed.

14.
Metabolites ; 13(4)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37110138

RESUMEN

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality globally. In recent decades, clinical research has made significant advances, resulting in improved survival and recovery rates for patients with CVD. Despite this progress, there is substantial residual CVD risk and an unmet need for better treatment. The complex and multifaceted pathophysiological mechanisms underlying the development of CVD pose a challenge for researchers seeking effective therapeutic interventions. Consequently, exosomes have emerged as a new focus for CVD research because their role as intercellular communicators gives them the potential to act as noninvasive diagnostic biomarkers and therapeutic nanocarriers. In the heart and vasculature, cell types such as cardiomyocytes, endothelial cells, vascular smooth muscle, cardiac fibroblasts, inflammatory cells, and resident stem cells are involved in cardiac homeostasis via the release of exosomes. Exosomes encapsulate cell-type specific miRNAs, and this miRNA content fluctuates in response to the pathophysiological setting of the heart, indicating that the pathways affected by these differentially expressed miRNAs may be targets for new treatments. This review discusses a number of miRNAs and the evidence that supports their clinical relevance in CVD. The latest technologies in applying exosomal vesicles as cargo delivery vehicles for gene therapy, tissue regeneration, and cell repair are described.

15.
Front Neurosci ; 17: 1090672, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36908792

RESUMEN

Traumatic brain injury (TBI) results when external physical forces impact the head with sufficient intensity to cause damage to the brain. TBI can be mild, moderate, or severe and may have long-term consequences including visual difficulties, cognitive deficits, headache, pain, sleep disturbances, and post-traumatic epilepsy. Disruption of the normal functioning of the brain leads to a cascade of effects with molecular and anatomical changes, persistent neuronal hyperexcitation, neuroinflammation, and neuronal loss. Destructive processes that occur at the cellular and molecular level lead to inflammation, oxidative stress, calcium dysregulation, and apoptosis. Vascular damage, ischemia and loss of blood brain barrier integrity contribute to destruction of brain tissue. This review focuses on the cellular damage incited during TBI and the frequently life-altering lasting effects of this destruction on vision, cognition, balance, and sleep. The wide range of visual complaints associated with TBI are addressed and repair processes where there is potential for intervention and neuronal preservation are highlighted.

16.
Vaccines (Basel) ; 11(3)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36992125

RESUMEN

The ongoing coronavirus disease 2019 (COVID-19) pandemic may result in cardiovascular complications such as myocarditis, while encephalitis is a potentially life-threatening COVID-19-associated central nervous system complication. This case illustrates the possibility of developing severe multisystem symptoms from a COVID-19 infection, despite having received the COVID-19 vaccine within the year. Delay in treatment for myocarditis and encephalopathy can lead to permanent and possibly fatal damage. Our patient, a middle-aged female with a complicated medical history, initially came in without characteristic manifestations of myocarditis such as shortness of breath, chest pain, or arrhythmia, but with an altered mental status. Through further laboratory tests, the patient was diagnosed with myocarditis and encephalopathy, which were resolved within weeks through medical management and physical/occupational therapy. This case presentation describes the first reported case of concomitant COVID-19 myocarditis and encephalitis after receiving a booster dose within the year.

17.
Concussion ; 8(4): CNC111, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38855759

RESUMEN

#brain #injury in the #football #player - we need better #diagnosis and #prevention. #view our #latest #publication in the #journal Concussion @futuresciencegp on @thegame #Blood test #biomarker #innovation #safety @NFL.

18.
Medicina (Kaunas) ; 60(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38256338

RESUMEN

Prostate cancer is the second leading cause of cancer death in men in the United States. Androgen deprivation therapy (ADT) is currently the primary treatment for metastatic prostate cancer, and some studies have shown that the use of anti-androgen drugs is related to a reduction in cognitive function, mood changes, diminished quality of life, dementia, and possibly Alzheimer's disease. ADT has potential physiological effects such as a reduction in white matter integrity and a negative impact on hypothalamic functions due to the lowering of testosterone levels or the blockade of downstream androgen receptor signaling by first- and second-generation anti-androgen drugs. A comparative analysis of prostate cancer patients undergoing ADT and Alzheimer patients identified over 30 shared genes, illustrating common ground for the mechanistic underpinning of the symptomatology. The purpose of this review was to investigate the effects of ADT on cognitive function, mood, and quality of life, as well as to analyze the relationship between ADT and Alzheimer's disease. The evaluation of prostate cancer patient cognitive ability via neurocognitive testing is described. Future studies should further explore the connection among cognitive deficits, mood disturbances, and the physiological changes that occur when hormonal balance is altered.


Asunto(s)
Enfermedad de Alzheimer , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/complicaciones , Neoplasias de la Próstata/tratamiento farmacológico , Antagonistas de Andrógenos/efectos adversos , Andrógenos , Calidad de Vida , Cognición
20.
AIMS Public Health ; 9(3): 618-629, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330282

RESUMEN

Despite intensive research, effective treatments for many common and devastating diseases are lacking. For example, huge efforts and billions of dollars have been invested in Alzheimer's disease (AD), which affects over 50 million people worldwide. However, there is still no effective drug that can slow or cure AD. This relates, in part, to the absence of an animal model or cellular system that incorporates all the relevant features of the disease. Therefore, large scale studies on human populations and tissues will be key to better understanding dementia and developing methods to prevent or treat it. This is especially difficult because the dementia phenotype can result from many different processes and is likely to be affected by multiple personal and environmental variables. We hypothesize that analyzing massive volumes of demographic data that are currently available and combining this with genomic, proteomic, and metabolomic profiles of AD patients and their families, new insights into pathophysiology and treatment of AD may arise. While this requires much coordination and cooperation among large institutions, the potential for advancement would be life-changing for millions of people. In many ways this represents the next step in the information revolution started by the Human Genome Project.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...