Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(9)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37177721

RESUMEN

Joint quasi-stiffness has been often used to inform exoskeleton design. Further understanding of hip quasi-stiffness is needed to design hip exoskeletons. Of interest are wearer responses to walking speed changes with added mass of the exoskeleton. This study analyzed hip quasi-stiffness at 3 walking speed levels and 9 added mass distributions among 13 young and 16 middle-aged adults during mid-stance hip extension and late-stance hip flexion. Compared to young adults, middle-aged adults maintained a higher quasi-stiffness with a smaller range. For a faster walking speed, both age groups increased extension and flexion quasi-stiffness. With mass evenly distributed on the pelvis and thighs or biased to the pelvis, both groups maintained or increased extension quasi-stiffness. With mass biased to the thighs, middle-aged adults maintained or decreased extension quasi-stiffness while young adults increased it. Young adults decreased flexion quasi-stiffness with added mass but not in any generalizable pattern with mass amounts or distributions. Conversely, middle-aged adults maintained or decreased flexion quasi-stiffness with even distribution on the pelvis and thighs or biased to the pelvis, while no change occurred if biased to the thighs. In conclusion, these results can guide the design of a hip exoskeleton's size and mass distribution according to the intended user's age.


Asunto(s)
Dispositivo Exoesqueleto , Caminata , Adulto Joven , Persona de Mediana Edad , Humanos , Caminata/fisiología , Velocidad al Caminar , Articulación de la Cadera/fisiología , Pelvis , Fenómenos Biomecánicos/fisiología , Marcha/fisiología
2.
Sensors (Basel) ; 24(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38203094

RESUMEN

Task-specific training has been shown to be an effective neuromotor rehabilitation intervention, however, this repetitive approach is not always very engaging. Virtual reality (VR) systems are becoming increasingly popular in therapy due to their ability to encourage movement through customizable and immersive environments. Additionally, VR can allow for a standardization of tasks that is often lacking in upper extremity research. Here, 16 healthy participants performed upper extremity movement tasks synced to music, using a commercially available VR game known as Beat Saber. VR tasks were customized to characterize participants' joint angles with respect to each task's specified cardinal direction (inward, outward, upward, or downward) and relative task location (medial, lateral, high, and/or low). Movement levels were designed using three common therapeutic approaches: (1) one arm moving only (unilateral), (2) two arms moving in mirrored directions about the participant's midline (mirrored), or (3) two arms moving in opposing directions about the participant's midline (opposing). Movement was quantified using an XSens System, a wearable inertial measurement unit (IMU) technology. Results reveal a highly engaging and effective approach to quantifying movement strategies. Inward and outward (horizontal) tasks resulted in decreased wrist extension. Upward and downward (vertical) tasks resulted in increased shoulder flexion, wrist radial deviation, wrist ulnar deviation, and elbow flexion. Lastly, compared to opposing, mirrored, and unilateral movement levels often exaggerated joint angles. Virtual reality games, like Beat Saber, offer a repeatable and customizable upper extremity intervention that has the potential to increase motivation in therapeutic applications.


Asunto(s)
Realidad Virtual , Dispositivos Electrónicos Vestibles , Humanos , Fenómenos Biomecánicos , Extremidad Superior , Tecnología
3.
Sensors (Basel) ; 22(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36501878

RESUMEN

Lower-limb exoskeletons, regardless of their control strategies, have been shown to alter a user's gait just by the exoskeleton's own mass and inertia. The characterization of these differences in joint kinematics and kinetics under exoskeleton-like added mass is important for the design of such devices and their control strategies. In this study, 19 young, healthy participants walked overground at self-selected speeds with six added mass conditions and one zero-added-mass condition. The added mass conditions included +2/+4 lb on each shank or thigh or +8/+16 lb on the pelvis. OpenSim-derived lower-limb sagittal-plane kinematics and kinetics were evaluated statistically with both peak analysis and statistical parametric mapping (SPM). The results showed that adding smaller masses (+2/+8 lb) altered some kinematic and kinetic peaks but did not result in many changes across the regions of the gait cycle identified by SPM. In contrast, adding larger masses (+4/+16 lb) showed significant changes within both the peak and SPM analyses. In general, adding larger masses led to kinematic differences at the ankle and knee during early swing, and at the hip throughout the gait cycle, as well as kinetic differences at the ankle during stance. Future exoskeleton designs may implement these characterizations to inform exoskeleton hardware structure and cooperative control strategies.


Asunto(s)
Marcha , Caminata , Humanos , Fenómenos Biomecánicos , Articulación del Tobillo , Pierna
4.
Sensors (Basel) ; 22(16)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36015914

RESUMEN

To improve exoskeleton designs, it is crucial to understand the effects of the placement of such added mass on a broad spectrum of users. Most prior studies on the effects of added mass on gait have analyzed young adults using discrete point analysis. This study quantifies the changes in gait characteristics of young and middle-aged adults in response to added mass across the whole gait cycle using statistical parametric mapping. Fourteen middle-aged and fourteen younger adults walked during 60 s treadmill trials under nine different loading conditions. The conditions represented full-factorial combinations of low (+3.6 lb), medium (+5.4 lb), and high (+10.8 lb) mass amounts at the thighs and pelvis. Joint kinematics, kinetics and muscle activations were evaluated. The young and middle-aged adults had different responses to added mass. Under pelvis loading, middle-aged adults did not adopt the same kinematic responses as younger adults. With thigh loading, middle-aged adults generally increased knee joint muscle activity around heel strike, which could have a negative impact on joint loading. Overall, as age may impact the user's response to an exoskeleton, designers should aim to include sensors to directly monitor user response and adaptive control approaches that account for these differences.


Asunto(s)
Dispositivo Exoesqueleto , Marcha , Fenómenos Biomecánicos/fisiología , Marcha/fisiología , Humanos , Articulación de la Rodilla/fisiología , Persona de Mediana Edad , Caminata/fisiología , Adulto Joven
5.
Gait Posture ; 92: 116-122, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34839206

RESUMEN

BACKGROUND: Lower-extremity exoskeletons have been used in rehabilitation and performance augmentation for the past two decades. An exoskeleton adds a significant load to certain segments of the user's body and the underlying science about the effects of adding mass to the different lower-body segments is limited. RESEARCH QUESTION: What are the adaptive changes that occur when mass is placed on three lower body segments (pelvis, thigh, and shank)? METHODS: Healthy adults (n = 24) completed 5 overground walking trials for 7 added mass conditions. The seven added mass conditions included a Baseline (no-load) condition, + 2 and + 4 lb on either the shanks or the thighs, and + 8 and + 16 lb on the pelvis. Spatiotemporal metrics, surface electromyography (EMG) data from 5 lower-limb muscles, and ground reaction force data were analyzed and compared between conditions. RESULTS: Pelvis mass of 16 lb increased the double support time (p < 0.001) and decreased the single support time (p < 0.001) from the Baseline. Loading rate for none of the added mass conditions were significantly different from the Baseline. The highest activation of the considered thigh muscles and gastrocnemius generally occurred when High Mass was added either to the pelvis or the thigh. SIGNIFICANCE: The results demonstrate how added mass affects muscle activity, which could inform design of EMG-based exoskeleton controllers. With respect to spatiotemporal changes, results indicate that adding masses equal to or greater than 16 lb on the pelvis can cause significant differences when compared to unloaded walking. This finding implies that all other mass loadings in this study, regardless of location, are regulated. Thus, as a guideline to exoskeleton design, we recommend mass distributions over the pelvis and the thigh to take advantage of the larger muscle groups in adapting to the added mass.


Asunto(s)
Dispositivo Exoesqueleto , Marcha , Adulto , Fenómenos Biomecánicos , Electromiografía , Marcha/fisiología , Humanos , Músculo Esquelético/fisiología , Caminata/fisiología
6.
IEEE Int Conf Rehabil Robot ; 2019: 506-511, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31374680

RESUMEN

Exoskeletons are human-robot interfaces that have enormous potential to assist people with everyday tasks. To improve the design of exoskeletons for use in clinical populations, it is important to further our understanding of how exoskeleton design and control parameters lead to sub-optimal effectiveness. Here we simulated the effect of three factors, gait variability, wearer-exoskeleton delays, and exoskeleton inertia, have on the predicted energy assistance provided by an exoskeleton with a finite-state controller trained on a set of stroke survivors' free walking gait data. Results indicate that larger errors between the wearer's desired ankle trajectory and the exo's estimated ankle trajectory result in statistically large reductions in the actual assistance provided. Specifically lags on the order of even 10 ms can illustrate statistically sub-optimal performance. Likewise subjects that exhibit large gait variability will have a statistical reduction in actual assistance. However, reasonably low exoskeleton inertias are not significant as a factor in terms of sensitivity to wearer assistance. Therefore, to improve cooperative control algorithms for exoskeletons and achieve true assistance based on wearer induced motion, this work implies that designers should prioritize minimizing delays and wearers should train to reduce variability in order to maximize energy savings.


Asunto(s)
Dispositivo Exoesqueleto , Marcha , Robótica , Caminata , Fenómenos Biomecánicos , Humanos
7.
J Biomech ; 67: 129-136, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29248191

RESUMEN

Post-stroke individuals often exhibit abnormal kinematics, including increased pelvic obliquity and hip abduction coupled with reduced knee flexion. Prior examinations suggest these behaviors are expressions of abnormal cross-planar coupling of muscle activity. However, few studies have detailed the impact of gait-retraining paradigms on three-dimensional joint kinematics. In this study, a cross-tilt walking surface was examined as a novel gait-retraining construct. We hypothesized that relative to baseline walking kinematics, exposure to cross-tilt would generate significant changes in subsequent flat-walking joint kinematics during affected limb swing. Twelve post-stroke participants walked on a motorized treadmill platform during a flat-walking condition and during a 10-degree cross-tilt with affected limb up-slope, increasing toe clearance demand. Individuals completed 15 min of cross-tilt walking with intermittent flat-walking catch trials and a final washout period (5 min). For flat-walking conditions, we examined changes in pelvic obliquity, hip abduction/adduction and knee flexion kinematics at the spatiotemporal events of swing initiation and toe-off, and the kinematic event of maximum angle during swing. Pelvic obliquity significantly reduced at swing initiation and maximum obliquity in the final catch trial and late washout. Knee flexion significantly increased at swing initiation, toe-off, and maximum flexion across catch trials and late washout. Hip abduction/adduction was not significantly influenced following cross-tilt walking. Significant decrease in the rectus femoris and medial hamstrings muscle activity across catch trials and late washout was observed. Exploiting the abnormal features of post-stroke gait during retraining yielded desirable changes in muscular and kinematic patterns post-training.


Asunto(s)
Marcha/fisiología , Fenómenos Mecánicos , Accidente Cerebrovascular/fisiopatología , Fenómenos Biomecánicos , Femenino , Humanos , Cinética , Masculino , Persona de Mediana Edad , Rango del Movimiento Articular
8.
J Biomech ; 48(10): 1782-8, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26037229

RESUMEN

The ability to execute appropriate medio-lateral foot placements during gait is thought to require active frontal plane control and to be critical in maintaining upright posture during gait. The aggregate frontal plane metrics of step width and step width variability have been assessed for post-stroke populations, but only under normal walking conditions. However, in the case of stroke, limb specific differences in sensory-motor control are likely. Thus, an investigation of limb specific motor control characteristics under tracking task conditions is needed to appropriately characterize frontal plane sensory-motor control post-stroke. Chronic stroke subjects (n=15) and age matched control subjects (n=10) tracked static, bilateral foot placement targets at self-selected walking speeds and completed a free walking trial. Variability and error of tracking performance were analyzed for step width and foot placement. Stroke subjects demonstrated reduced ability to control step width variability and foot placement variability, compared to control subjects. Step width variability and affected limb foot placement variability were sensitive to task complexity, increasing significantly in response to a decrease in step width target size. These results show that stroke mediated changes in the sensory-motor integration processes are manifested as inter-limb differences in frontal plane motor variability during a gait tracking task, with an additional sensitivity to task complexity. Additionally, the proposed step width tracking paradigm presents a clinically reproducible motor control metric that can be used for diagnostic assessment or as a potential outcome for a gait training regimen.


Asunto(s)
Marcha/fisiología , Desempeño Psicomotor/fisiología , Accidente Cerebrovascular/fisiopatología , Estudios de Casos y Controles , Femenino , Pie/fisiología , Humanos , Masculino , Persona de Mediana Edad , Postura/fisiología , Caminata/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...