Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 628(8006): 195-203, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38480879

RESUMEN

Sustained smouldering, or low-grade activation, of myeloid cells is a common hallmark of several chronic neurological diseases, including multiple sclerosis1. Distinct metabolic and mitochondrial features guide the activation and the diverse functional states of myeloid cells2. However, how these metabolic features act to perpetuate inflammation of the central nervous system is unclear. Here, using a multiomics approach, we identify a molecular signature that sustains the activation of microglia through mitochondrial complex I activity driving reverse electron transport and the production of reactive oxygen species. Mechanistically, blocking complex I in pro-inflammatory microglia protects the central nervous system against neurotoxic damage and improves functional outcomes in an animal disease model in vivo. Complex I activity in microglia is a potential therapeutic target to foster neuroprotection in chronic inflammatory disorders of the central nervous system3.


Asunto(s)
Complejo I de Transporte de Electrón , Inflamación , Microglía , Enfermedades Neuroinflamatorias , Animales , Femenino , Humanos , Masculino , Ratones , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Modelos Animales de Enfermedad , Transporte de Electrón/efectos de los fármacos , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo I de Transporte de Electrón/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Multiómica , Células Mieloides/metabolismo , Células Mieloides/patología , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Especies Reactivas de Oxígeno/metabolismo
2.
bioRxiv ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38260262

RESUMEN

Sustained smouldering, or low grade, activation of myeloid cells is a common hallmark of several chronic neurological diseases, including multiple sclerosis (MS) 1 . Distinct metabolic and mitochondrial features guide the activation and the diverse functional states of myeloid cells 2 . However, how these metabolic features act to perpetuate neuroinflammation is currently unknown. Using a multiomics approach, we identified a new molecular signature that perpetuates the activation of myeloid cells through mitochondrial complex II (CII) and I (CI) activity driving reverse electron transport (RET) and the production of reactive oxygen species (ROS). Blocking RET in pro-inflammatory myeloid cells protected the central nervous system (CNS) against neurotoxic damage and improved functional outcomes in animal disease models in vivo . Our data show that RET in myeloid cells is a potential new therapeutic target to foster neuroprotection in smouldering inflammatory CNS disorders 3 .

3.
Sci Rep ; 11(1): 1340, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33446684

RESUMEN

Omega 3 polyunsaturated fatty acids (PUFAs) influence metabolism and thermogenesis in non-hibernators. How omega 3 PUFAs influence Arctic Ground Squirrels (AGS) during hibernation is unknown. Prior to hibernation we fed AGS chow composed of an omega 6:3 ratio approximately 1:1 (high in omega 3 PUFA, termed Balanced Diet), or an omega 6:3 ratio of 5:1 (Standard Rodent Chow), and measured the influence of diet on core body temperature (Tb), brown adipose tissue (BAT) mass, fatty acid profiles of BAT, white adipose tissue (WAT) and plasma as well as hypothalamic endocannabinoid and endocannabinoid-like bioactive fatty acid amides during hibernation. Results show feeding a diet high in omega 3 PUFAs, with a more balanced omega 6:3 ratio, increases AGS Tb in torpor. We found the diet-induced increase in Tb during torpor is most easily explained by an increase in the mass of BAT deposits of Balanced Diet AGS. The increase in BAT mass is associated with elevated levels of metabolites DHA and EPA in tissue and plasma suggesting that these omega 3 PUFAs may play a role in thermogenesis during torpor. While we did not observe diet-induced change in endocannabinoids, we do report altered hypothalamic levels of some endocannabinoids, and endocannabinoid-like compounds, during hibernation.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Ácidos Grasos Omega-3/farmacología , Sciuridae/metabolismo , Termogénesis/efectos de los fármacos , Letargo/efectos de los fármacos , Animales , Ácidos Grasos Omega-3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...