Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 825
Filtrar
1.
Chronobiol Int ; : 1-12, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745424

RESUMEN

The purpose of this study was to investigate the effects of a novel dietary supplement, including melatonin and magnesium, delivered via coffee pods on sleep quality, resting metabolic rate (RMR), and body composition in individuals with poor sleep quality disturbances. Using a double-blinded, randomized, crossover trial, we recruited 35 participants to a 4-week intervention with both supplements (1.9 mg melatonin + 200 mg elemental magnesium before sleep) and placebo conditions, considering a 7d washout period between treatments. The Pittsburgh Sleep Quality Index (PSQI) questionnaire was applied, RMR (kcal) was measured using indirect calorimetry (canopy ventilated open-circuit system) and body composition was assessed using dual-energy X-ray absorptiometry. Decreases in PSQI and anger - hostility scores, as well as in energy intake and fat mass, were observed (p < 0.05) for both conditions, from baseline to the end of each 4-week intervention. Differences between conditions were also observed for these parameters along with energy spent in activity, number of sedentary breaks, sleep efficiency, latency time, time in bed, total sleep time, awakening time, and movement index (p < 0.05) favouring the supplement condition. However, the final PSQI questionnaire scores still indicated poor sleep quality on average (PSQI > 5), in both conditions, with no changes regarding RMR. A melatonin-magnesium supplement, in a coffee pod format, showed improvements in sleep quality in otherwise healthy individuals with sleep disturbances, however PSQI questionnaire scores still indicated poor quality on average (PSQI > 5).

2.
Curr Drug Targets ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38706348

RESUMEN

Ferroptosis is implicated in the pathogenesis of multiple diseases, including neurodegenerative diseases, cardiovascular diseases, kidney pathologies, ischemia-reperfusion injury, and cancer. The current review article highlights the involvement of ferroptosis in traumatic brain injury, acute kidney damage, ethanol-induced liver injury, and PM2.5-induced lung injury. Melatonin, a molecule produced by the pineal gland and many other organs, is well known for its anti- aging, anti-inflammatory, and anticancer properties and is used in the treatment of different diseases. Melatonin's ability to activate anti-ferroptosis pathways including sirtuin (SIRT)6/p- nuclear factor erythroid 2-related factor 2 (Nrf2), Nrf2/ antioxidant responsive element (ARE)/ heme oxygenase (HO-1)/SLC7A11/glutathione peroxidase (GPX4)/ prostaglandin-endoperoxide synthase 2 (PTGS2), extracellular signal-regulated kinase (ERK)/Nrf2, ferroportin (FPN), Hippo/ Yes-associated protein (YAP), Phosphoinositide 3-kinase (PI3K)/ protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) and SIRT6/ nuclear receptor coactivator 4 (NCOA4)/ ferritin heavy chain 1 (FTH1) signaling pathways suggests that it could serve as a valuable therapeutic agent for preventing cell death associated with ferroptosis in various diseases. Further research is needed to fully understand the precise mechanisms by which melatonin regulates ferroptosis and its potential as a therapeutic target.

3.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732075

RESUMEN

Melatonin and sericin exhibit antioxidant properties and may be useful in topical wound healing patches by maintaining redox balance, cell integrity, and regulating the inflammatory response. In human skin, melatonin suppresses damage caused by ultraviolet radiation (UVR) which involves numerous mechanisms associated with reactive oxygen species/reactive nitrogen species (ROS/RNS) generation and enhancing apoptosis. Sericin is a protein mainly composed of glycine, serine, aspartic acid, and threonine amino acids removed from the silkworm cocoon (particularly Bombyx mori and other species). It is of interest because of its biodegradability, anti-oxidative, and anti-bacterial properties. Sericin inhibits tyrosinase activity and promotes cell proliferation that can be supportive and useful in melanoma treatment. In recent years, wound healing patches containing sericin and melatonin individually have attracted significant attention by the scientific community. In this review, we summarize the state of innovation of such patches during 2021-2023. To date, melatonin/sericin-polymer patches for application in post-operational wound healing treatment has been only sparingly investigated and it is an imperative to consider these materials as a promising approach targeting for skin tissue engineering or regenerative dermatology.


Asunto(s)
Melanoma , Melatonina , Sericinas , Cicatrización de Heridas , Melatonina/uso terapéutico , Melatonina/farmacología , Humanos , Cicatrización de Heridas/efectos de los fármacos , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Melanoma/patología , Animales , Sericinas/farmacología , Sericinas/uso terapéutico , Antioxidantes/uso terapéutico , Antioxidantes/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología
4.
Artículo en Inglés | MEDLINE | ID: mdl-38686544

RESUMEN

Melatonin, a product of tryptophan metabolism via serotonin, is a molecule with an indole backbone that is widely produced by bacteria, unicellular eukaryotic organisms, plants, fungi and all animal taxa. Aside from its role in the regulation of circadian rhythms, it has diverse biological actions including regulation of cytoprotective responses and other functions crucial for survival across different species. The latter properties are also shared by its metabolites including kynuric products generated by reactive oxygen species or phototransfomation induced by ultraviolet radiation. Vitamins D and related photoproducts originate from phototransformation of ∆5,7 sterols, of which 7-dehydrocholesterol and ergosterol are examples. Their ∆5,7 bonds in the B ring absorb solar ultraviolet radiation [290-315 nm, ultraviolet B (UVB) radiation] resulting in B ring opening to produce previtamin D, also referred to as a secosteroid. Once formed, previtamin D can either undergo thermal-induced isomerization to vitamin D or absorb UVB radiation to be transformed into photoproducts including lumisterol and tachysterol. Vitamin D, as well as the previtamin D photoproducts lumisterol and tachysterol, are hydroxylated by cyochrome P450 (CYP) enzymes to produce biologically active hydroxyderivatives. The best known of these is 1,25-dihydroxyvitamin D (1,25(OH)2D) for which the major function in vertebrates is regulation of calcium and phosphorus metabolism. Herein we review data on melatonin production and metabolism and discuss their functions in insects. We discuss production of previtamin D and vitamin D, and their photoproducts in fungi, plants and insects, as well as mechanisms for their enzymatic activation and suggest possible biological functions for them in these groups of organisms. For the detection of these secosteroids and their precursors and photoderivatives, as well as melatonin metabolites, we focus on honey produced by bees and on body extracts of Drosophila melanogaster. Common biological functions for melatonin derivatives and secosteroids such as cytoprotective and photoprotective actions in insects are discussed. We provide hypotheses for the photoproduction of other secosteroids and of kynuric metabolites of melatonin, based on the known photobiology of ∆5,7 sterols and of the indole ring, respectively. We also offer possible mechanisms of actions for these unique molecules and summarise differences and similarities of melatoninergic and secosteroidogenic pathways in diverse organisms including insects.

6.
Pharmacol Rep ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607587

RESUMEN

Oral diseases, including periodontal disorders, oral cancer, periodontitis, and mucositis are the major challenges for both patients and healthcare providers. These conditions often involve inflammation, oxidative stress, and impaired cellular processes, leading to symptoms ranging from discomfort to severe debilitation. Conventional treatments for such oral diseases exhibit constraints, prompting the investigation of innovative therapeutic approaches. Considering the anti-inflammatory, anti-oxidant, and anti-cancer effects of melatonin, this study was carried out to investigate the potential protective effects of melatonin in mitigating the severity of oral diseases. Studies indicate that melatonin influences the differentiation of periodontal stem cells, inhibits oral cancer progression, reduces inflammation associated with periodontitis, and alleviates the severity of oral mucositis. Melatonin has demonstrated potential efficacy in both preclinical and clinical investigations; however, findings are frequently heterogeneous and contingent upon contextual factors. This review provides a comprehensiveoverview of current state of knowledge in this domain, elucidating the multifaceted role that melatonin may assume in combatingoral diseases. Further research should be directed toward determining the most effective dosing, timing, and administration methods for melatonin-based therapies for oral diseases.

7.
J Exp Zool A Ecol Integr Physiol ; 341(4): 470-482, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38433718

RESUMEN

The protective action of melatonin (MLT) against the harmful effects of cadmium (Cd) on testicular activity in rats has been documented previously; however, the involved molecular mechanisms have yet to be elucidated. Herein, we investigate the involvement of the mammalian target of rapamycin (mTOR) on the ability of MLT to counteract the damage induced by Cd on the rat testicular activity. Our study confirmed that Cd has harmful effects on the testes of rats and the protective action exerted by MLT. We reported, for the first time, that the addition of rapamycin (Rapa), a specific mTOR inhibitor, to animals co-treated with Cd and MLT completely abolished the beneficial effects exerted by MLT, indicating that the mTOR pathway partially modulates its helpful effects on Cd testicular toxicity. Interestingly, Rapa-alone treatment, provoking mTOR inhibition, produced altered morphological parameters, increased autophagy of germ and somatic cells, and reduced serum testosterone concentration. In addition, mTOR inhibition also reduced protein levels of markers of steroidogenesis (3ß-Hydroxysteroid dehydrogenase) and blood-testis barrier integrity (occludin and connexin 43). Finally, Rapa altered sperm parameters as well as the ability of mature spermatozoa to perform a proper acrosome reaction. Although further investigation is needed to better clarify the molecular pathway involved in MLT action, we confirm that MLT alleviating Cd effects can be used as a supplement to enhance testicular function and improve male gamete quality.


Asunto(s)
Melatonina , Ratas , Masculino , Animales , Melatonina/farmacología , Cadmio/toxicidad , Sirolimus/farmacología , Semen/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Mamíferos/metabolismo
8.
Cancer Lett ; 587: 216659, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38367897

RESUMEN

Despite the challenges posed by drug resistance and side effects, chemotherapy remains a pivotal strategy in cancer treatment. A key issue in this context is macroautophagy (commonly known as autophagy), a dysregulated cell death mechanism often observed during chemotherapy. Autophagy plays a cytoprotective role by maintaining cellular homeostasis and recycling organelles, and emerging evidence points to its significant role in promoting cancer progression. Cisplatin, a DNA-intercalating agent known for inducing cell death and cell cycle arrest, often encounters resistance in chemotherapy treatments. Recent studies have shown that autophagy can contribute to cisplatin resistance or insensitivity in tumor cells through various mechanisms. This resistance can be mediated by protective autophagy, which suppresses apoptosis. Additionally, autophagy-related changes in tumor cell metastasis, particularly the induction of Epithelial-Mesenchymal Transition (EMT), can also lead to cisplatin resistance. Nevertheless, pharmacological strategies targeting the regulation of autophagy and apoptosis offer promising avenues to enhance cisplatin sensitivity in cancer therapy. Notably, numerous non-coding RNAs have been identified as regulators of autophagy in the context of cisplatin chemotherapy. Thus, therapeutic targeting of autophagy or its associated pathways holds potential for restoring cisplatin sensitivity, highlighting an important direction for future clinical research.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Cisplatino/farmacología , Resistencia a Antineoplásicos , Línea Celular Tumoral , Apoptosis , Autofagia , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/genética
9.
Life Sci ; 343: 122508, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38382873

RESUMEN

Alcohol intake provokes severe organ injuries including alcoholic cardiomyopathy with hallmarks of cardiac remodeling and contractile defects. This study examined the toxicity of facilitated ethanol metabolism in alcoholism-evoked changes in myocardial morphology and contractile function, insulin signaling and various cell death domains using cardiac-selective overexpression of alcohol dehydrogenase (ADH). WT and ADH mice were offered an alcohol liquid diet for 12 weeks prior to assessment of cardiac geometry, function, ER stress, apoptosis and ferroptosis. Alcohol intake provoked pronounced glucose intolerance, cardiac remodeling and contractile anomalies with apoptosis, ER stress, and ferroptosis, the effects were accentuated by ADH with the exception of global glucose intolerance. Hearts from alcohol ingesting mice displayed dampened insulin-stimulated phosphorylation of insulin receptor (tyr1146) and IRS-1 (tyrosine) along with elevated IRS-1 serine phosphorylation, the effect was augmented by ADH. Alcohol challenge dampened phosphorylation of Akt and GSK-3ß, and increased phosphorylation of c-Jun and JNK, the effects were accentuated by ADH. Alcohol challenge promoted ER stress, FK506 binding protein 5 (FKBP5), YAP, apoptosis and ferroptosis, the effects were exaggerated by ADH. Using a short-term ethanol challenge model (3 g/kg, i.p., twice in three days), we found that inhibition of FKBP5-YAP signaling or facilitated ethanol detoxification by Alda-1 alleviated ethanol cardiotoxicity. In vitro study revealed that the ethanol metabolite acetaldehyde evoked cardiac contractile anomalies, lipid peroxidation, and apoptosis, the effects of which were mitigated by Alda-1, inhibition of ER stress, FKBP5 and YAP. These data suggest that facilitated ethanol metabolism via ADH exacerbates alcohol-evoked myocardial remodeling, functional defects, and insulin insensitivity possibly through a FKBP5-YAP-associated regulation of ER stress and ferroptosis.


Asunto(s)
Alcoholismo , Ferroptosis , Intolerancia a la Glucosa , Proteínas de Unión a Tacrolimus , Ratones , Animales , Etanol/farmacología , Alcohol Deshidrogenasa/metabolismo , Alcohol Deshidrogenasa/farmacología , Intolerancia a la Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Remodelación Ventricular , Ratones Transgénicos , Alcoholismo/complicaciones , Alcoholismo/metabolismo , Contracción Miocárdica , Insulina/metabolismo , Miocitos Cardíacos/metabolismo
10.
Int J Mol Med ; 53(3)2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38299237

RESUMEN

Coronavirus disease 2019 (COVID­19), a systemic illness caused by severe acute respiratory distress syndrome 2 (SARS­CoV­2), has triggered a worldwide pandemic with symptoms ranging from asymptomatic to chronic, affecting practically every organ. Melatonin, an ancient antioxidant found in all living organisms, has been suggested as a safe and effective therapeutic option for the treatment of SARS­CoV­2 infection due to its good safety characteristics and broad­spectrum antiviral medication properties. Melatonin is essential in various metabolic pathways and governs physiological processes, such as the sleep­wake cycle and circadian rhythms. It exhibits oncostatic, anti­inflammatory, antioxidant and anti­aging properties, exhibiting promise for use in the treatment of numerous disorders, including COVID­19. The preventive and therapeutic effects of melatonin have been widely explored in a number of conditions and have been well­established in experimental ischemia/reperfusion investigations, particularly in coronary heart disease and stroke. Clinical research evaluating the use of melatonin in COVID­19 has shown various improved outcomes, including reduced hospitalization durations; however, the trials are small. Melatonin can alleviate mitochondrial dysfunction in COVID­19, improve immune cell function and provide antioxidant properties. However, its therapeutic potential remains underexplored due to funding limitations and thus further investigations are required.


Asunto(s)
COVID-19 , Melatonina , Humanos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Melatonina/farmacología , Melatonina/uso terapéutico , Melatonina/metabolismo , Pandemias , Síndrome Post Agudo de COVID-19 , SARS-CoV-2/metabolismo
11.
Am J Pathol ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38417695

RESUMEN

This study was designed to discern the effect of heavy scavenger metallothionein on glutathione (GSH) deprivation-evoked cardiac anomalies and mechanisms involved with an emphasis on ferroptosis. Wild-type and cardiac metallothionein transgenic mice received GSH synthase inhibitor buthionine sulfoximine (BSO; 30 mmol/L in drinking water) for 14 days before assessment of myocardial morphology and function. BSO evoked cardiac remodeling and contractile anomalies, including cardiac hypertrophy, interstitial fibrosis, enlarged left ventricular chambers, deranged ejection fraction, fraction shortening, cardiomyocyte contractile capacity, intracellular Ca2+ handling, sarcoplasmic reticulum Ca2+ reuptake, loss of mitochondrial integrity (mitochondrial swelling, loss of aconitase activity), mitochondrial energy deficit, carbonyl damage, lipid peroxidation, ferroptosis, and apoptosis. Metallothionein itself did not affect myocardial morphology and function, although it mitigated BSO-provoked myocardial anomalies, loss of mitochondrial integrity and energy, and ferroptosis. Immunoblotting revealed down-regulated sarco(endo)plasmic reticulum Ca2+-ATPase 2a, glutathione peroxidase 4, the ferroptosis-suppressing iron-sulfur domain 1 (CISD1), and mitochondrial regulating glycogen synthase kinase-3ß phosphorylation with elevated p53, myosin heavy chain-ß isozyme, IκB phosphorylation, and SLC7A11 as well as unchanged SLC39A1, SLC1A5, and ferroptosis-suppressing protein 1 following BSO challenge, all of which, except glutamine transporter SLC7A11 and p53, were abrogated by metallothionein. Inhibition of CISD1 using pioglitazone nullified GSH-offered benefit against BSO-induced cardiomyocyte ferroptosis and contractile and intracellular Ca2+ derangement. Taken together, these findings support a regulatory modality for CISD1 in the impedance of ferroptosis in metallothionein-offered protection against GSH depletion-evoked cardiac aberration.

12.
Cancer Metastasis Rev ; 43(1): 457-479, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38227149

RESUMEN

Epithelial-mesenchymal transition (EMT) is a complicated molecular process that governs cellular shape and function changes throughout tissue development and embryogenesis. In addition, EMT contributes to the development and spread of tumors. Expanding and degrading the surrounding microenvironment, cells undergoing EMT move away from the main location. On the basis of the expression of fibroblast-specific protein-1 (FSP1), fibroblast growth factor (FGF), collagen, and smooth muscle actin (-SMA), the mesenchymal phenotype exhibited in fibroblasts is crucial for promoting EMT. While EMT is not entirely reliant on its regulators like ZEB1/2, Twist, and Snail proteins, investigation of upstream signaling (like EGF, TGF-ß, Wnt) is required to get a more thorough understanding of tumor EMT. Throughout numerous cancers, connections between tumor epithelial and fibroblast cells that influence tumor growth have been found. The significance of cellular crosstalk stems from the fact that these events affect therapeutic response and disease prognosis. This study examines how classical EMT signals emanating from various cancer cells interfere to tumor metastasis, treatment resistance, and tumor recurrence.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias , Humanos , Transición Epitelial-Mesenquimal/fisiología , Neoplasias/metabolismo , Transducción de Señal , Fenotipo , Resistencia a Medicamentos , Línea Celular Tumoral , Microambiente Tumoral
13.
Reprod Toxicol ; 124: 108534, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38185312

RESUMEN

This review summarizes data related to the potential importance of the ubiquitously functioning antioxidant, melatonin, in resisting oxidative stress and protecting against common pathophysiological disorders that accompany implantation, gestation and fetal development. Melatonin from the maternal pineal gland, but also trophoblasts in the placenta, perhaps in the mitochondria, produce this molecule as a hedge against impairment of the uteroplacental unit. We also discuss the role of circadian disruption on reproductive disorders of pregnancy. The common disorders of pregnancy, i.e., stillborn fetus, recurrent fetal loss, preeclampsia, fetal growth retardation, premature delivery, and fetal teratology are all conditions in which elevated oxidative stress plays a role and experimental supplementation with melatonin has been shown to reduce the frequency or severity of these conditions. Moreover, circadian disruption often occurs during pregnancy and has a negative impact on fetal health; conversely, melatonin has circadian rhythm synchronizing actions to overcome the consequences of chronodisruption which often appear postnatally. In view of the extensive findings supporting the ability of melatonin, an endogenously-produced and non-toxic molecule, to protect against experimental placental, fetal, and maternal pathologies, it should be given serious consideration as a supplement to forestall the disorders of pregnancy. Until recently, the collective idea was that melatonin supplements should be avoided during pregnancy. The data summarized herein suggests otherwise. The current findings coupled with the evidence, published elsewhere, showing that melatonin is highly protective of the fertilized oocyte from oxidative damage argues in favor of its use for improving pregnancy outcome generally.


Asunto(s)
Melatonina , Embarazo , Femenino , Humanos , Melatonina/farmacología , Placenta , Resultado del Embarazo , Antioxidantes/farmacología , Feto
14.
Life (Basel) ; 14(1)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38255703

RESUMEN

Cardiovascular disease is the cause of physical infirmity and thousands of deaths annually. Typically, during heart failure, cardiomyocyte mitochondria falter in terms of energy production and metabolic processing. Additionally, inflammation and the accumulation of non-contractile fibrous tissue contribute to cardiac malfunction. Melatonin, an endogenously produced molecule, experimentally reduces the initiation and progression of atherosclerotic lesions, which are often the basis of coronary artery disease. The current review critically analyzes published data related to the experimental use of melatonin to forestall coronary artery pathologies. Collectively, these studies document melatonin's anti-atherosclerotic actions in reducing LDL oxidation and triglyceride levels, lowering endothelial malfunction, limiting adhesion molecule formation, preventing macrophage polarization to the M1 pro-inflammatory phenotype, changing cellular metabolism, scavenging destructive reactive oxygen species, preventing the proliferation and invasion of arterial smooth muscle cells into the lesioned area, restricting the ingrowth of blood vessels from the vasa vasorum, and solidifying the plaque cap to reduce the chance of its rupture. Diabetic hyperglycemia, which aggravates atherosclerotic plaque formation, is also inhibited by melatonin supplementation in experimental animals. The potential value of non-toxic melatonin as a possible inhibitor of cardiac pathology in humans should be seriously considered by performing clinical trials using this multifunctional molecule.

15.
Curr Med Chem ; 31(11): 1315-1331, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37031385

RESUMEN

In recent years, substantial advances have been made in cancer treatment modalities. Yet, within the last three decades, neither cancer incidence nor the cancer-induced mortality rate has changed. Available anti-cancer chemotherapeutics possess remarkably restricted effectiveness and often have severe adverse effects. Hence, the identification of novel pharmaceutical agents that do not exhibit these major disadvantages is imperative. Melatonin, an important endogenous molecule synthesized and secreted by the pineal gland, is a promising chemical agent that has been comprehensively assessed over the last decades for its anti-inflammatory and anti-cancer properties. Melatonin is reportedly a significant inhibitor of cancer initiation, progression, and metastasis. The anti-- cancer potential of melatonin is principally mediated by reversing the up-regulated amounts of different transcription factors, growth factors, inflammatory cytokines, protein kinases, and other oncogenic agents. Also, melatonin often has signifcant inhibitory effects on cancer cell proliferation through either promoting apoptosis or inducing cell cycle arrest. The current review provides an insight into melatonin-induced effects against various human cancers with a particular focus on the regulation of Wnt/ß-catenin signaling pathway.


Asunto(s)
Melatonina , Neoplasias , Humanos , Melatonina/farmacología , Melatonina/uso terapéutico , Vía de Señalización Wnt , Neoplasias/patología , Proliferación Celular , Péptidos y Proteínas de Señalización Intercelular , Apoptosis , beta Catenina/metabolismo , beta Catenina/farmacología , Línea Celular Tumoral
16.
Acta Pharmacol Sin ; 45(1): 87-97, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37679644

RESUMEN

Recent evidence shows a close link between Parkinson's disease (PD) and cardiac dysfunction with limited treatment options. Mitophagy plays a crucial role in the control of mitochondrial quantity, metabolic reprogramming and cell differentiation. Mutation of the mitophagy protein Parkin is directly associated with the onset of PD. Parkin-independent receptor-mediated mitophagy is also documented such as BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) and FUN14 domain containing 1 (FUNDC1) for receptor-mediated mitophagy. In this study we investigated cardiac function and mitophagy including FUNDC1 in PD patients and mouse models, and evaluated the therapeutic potential of a SGLT2 inhibitor empagliflozin. MPTP-induced PD model was established. PD patients and MPTP mice not only displayed pronounced motor defects, but also low plasma FUNDC1 levels, as well as cardiac ultrastructural and geometric anomalies (cardiac atrophy, interstitial fibrosis), functional anomalies (reduced E/A ratio, fractional shortening, ejection fraction, cardiomyocyte contraction) and mitochondrial injury (ultrastructural damage, UCP2, PGC1α, elevated mitochondrial Ca2+ uptake proteins MCU and VDAC1, and mitochondrial apoptotic protein calpain), dampened autophagy, FUNDC1 mitophagy and apoptosis. By Gene set enrichment analysis (GSEA), we found overtly altered glucose transmembrane transport in the midbrains of MPTP-treated mice. Intriguingly, administration of SGLT2 inhibitor empagliflozin (10 mg/kg, i.p., twice per week for 2 weeks) in MPTP-treated mice significantly ameliorated myocardial anomalies (with exception of VDAC1), but did not reconcile the motor defects or plasma FUNDC1. FUNDC1 global knockout (FUNDC1-/- mice) did not elicit any phenotype on cardiac geometry or function in the absence or presence of MPTP insult, but it nullified empagliflozin-caused cardioprotection against MPTP-induced cardiac anomalies including remodeling (atrophy and fibrosis), contractile dysfunction, Ca2+ homeostasis, mitochondrial (including MCU, mitochondrial Ca2+ overload, calpain, PARP1) and apoptotic anomalies. In neonatal and adult cardiomyocytes, treatment with PD neurotoxin preformed fibrils of α-synuclein (PFF) caused cytochrome c release and cardiomyocyte mechanical defects. These effects were mitigated by empagliflozin (10 µM) or MCU inhibitor Ru360 (10 µM). MCU activator kaempferol (10 µM) or calpain activator dibucaine (500 µM) nullified the empagliflozin-induced beneficial effects. These results suggest that empagliflozin protects against PD-induced cardiac anomalies, likely through FUNDC1-mediated regulation of mitochondrial integrity.


Asunto(s)
Enfermedad de Parkinson , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Adulto , Humanos , Ratones , Animales , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Calpaína , Remodelación Ventricular , Proteínas Mitocondriales/metabolismo , Ubiquitina-Proteína Ligasas , Atrofia , Fibrosis , Proteínas de la Membrana/metabolismo
17.
J Hazard Mater ; 465: 132997, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38008054

RESUMEN

Presently, the exposure of plasticizers to humans and animals occurs daily, which pose a potential threat to reproductive health. In the present study, a pregnant mouse model exposed to di(2-ethylhexyl) phthalate (DEHP, one of the most common plasticizers) and melatonin was established, and the single-cell transcriptome technology was applied to investigate the effects of melatonin in ovarian cells against DEHP. Results showed that DEHP markedly altered the gene expression pattern of ovarian cells, and severely weakened the histone methylation modification of oocytes. The administration of melatonin recovered the expression of LHX8 and SOHLH1 proteins that essential for primordial follicle formation, and increased the expression of CEBPB, as well as key genes of histone methylation modification (such as Smyd3 and Kdm5a). In addition, the ovarian damage caused by DEHP was also relieved after the overexpression of CEBPB, which suggested melatonin could improve primordial follicle formation progress via enhancing CEBPB expression in mice. Besides, the apoptosis of ovarian cells induced by DEHP also was diminished by melatonin. The study provides evidence of melatonin preventing the damage mediated by plasticizers on the reproductive system in females and CEBPB may serve as a downstream target factor of melatonin in the process.


Asunto(s)
Dietilhexil Ftalato , Melatonina , Ácidos Ftálicos , Embarazo , Femenino , Humanos , Animales , Ratones , Melatonina/farmacología , Plastificantes/toxicidad , Dietilhexil Ftalato/toxicidad , Histonas , Oocitos , Proteína beta Potenciadora de Unión a CCAAT/farmacología
18.
Pharmacol Rep ; 76(1): 25-50, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37995089

RESUMEN

Fibrosis, the excessive deposition of fibrous connective tissue in an organ in response to injury, is a pathological condition affecting many individuals worldwide. Fibrosis causes the failure of tissue function and is largely irreversible as the disease progresses. Pharmacologic treatment options for organ fibrosis are limited, but studies suggest that antioxidants, particularly melatonin, can aid in preventing and controlling fibrotic damage to the organs. Melatonin, an indole nocturnally released from the pineal gland, is commonly used to regulate circadian and seasonal biological rhythms and is indicated for treating sleep disorders. While it is often effective in treating sleep disorders, melatonin's anti-inflammatory and antioxidant properties also make it a promising molecule for treating other disorders such as organ fibrosis. Melatonin ameliorates the necrotic and apoptotic changes that lead to fibrosis in various organs including the heart, liver, lung, and kidney. Moreover, melatonin reduces the infiltration of inflammatory cells during fibrosis development. This article outlines the protective effects of melatonin against fibrosis, including its safety and potential therapeutic effects. The goal of this article is to provide a summary of data accumulated to date and to encourage further experimentation with melatonin and increase its use as an anti-fibrotic agent in clinical settings.


Asunto(s)
Melatonina , Trastornos del Sueño-Vigilia , Humanos , Melatonina/farmacología , Melatonina/uso terapéutico , Melatonina/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Fibrosis , Hígado/metabolismo , Trastornos del Sueño-Vigilia/tratamiento farmacológico
19.
Pathol Res Pract ; 253: 155031, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38103362

RESUMEN

Combination chemotherapy appears to be a preferable option for some cancer patients, especially when the medications target multiple pathways of oncogenesis; individuals treated with combination treatments may have a better prognosis than those treated with single agent chemotherapy. However, research has revealed that this is not always the case, and that this technique may just enhance toxicity while having little effect on boosting the anticancer effects of the medications. Cisplatin (CDDP) is a chemotherapeutic medicine that is commonly used to treat many forms of cancer. However, it has major adverse effects such as cardiotoxicity, skin necrosis, testicular toxicity, and nephrotoxicity. Many research have been conducted to investigate the effectiveness of melatonin (MLT) as an anticancer medication. MLT operates in a variety of ways, including decreasing cancer cell growth, causing apoptosis, and preventing metastasis. We review the literature on the role of MLT as an adjuvant in CDDP-based chemotherapies and discuss how MLT may enhance CDDP's antitumor effects (e.g., by inducing apoptosis and suppressing metastasis) while protecting other organs from its adverse effects, such as cardio- and nephrotoxicity.


Asunto(s)
Antineoplásicos , Melatonina , Neoplasias , Humanos , Cisplatino/uso terapéutico , Melatonina/farmacología , Melatonina/uso terapéutico , Neoplasias/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Quimioterapia Combinada , Apoptosis
20.
Rev Med Virol ; 34(1): e2499, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38126924

RESUMEN

This review assesses the antiviral potential of melatonin through comprehensive analysis of studies across human subjects, animal models, cell cultures, and in-silico simulations. The search strategy targeted relevant research until 22 June 2023, resulting in 20 primary studies after screening and deduplication. The findings highlight strong evidence supporting antiviral properties of melatonin. In silico studies identify melatonin as a candidate against SARS-CoV-2, reducing cytokine storm-related respiratory responses. Cell culture experiments reveal its multifaceted effects on different viruses including respiratory syncytial virus, anti-dengue virus, transmissible gastroenteritis virus, and encephalomyocarditis virus. Animal studies show melatonin reduces mortality and viral replication in various infections such as Venezuelan equine encephalomyelitis and COVID-19. Clinical trials show how it could be evaluated, but with no conclusive evidence of efficacy and safety so far from large, double-blind placebo-controlled trials. These insights showcase the potential of melatonin as a versatile antiviral agent with immunomodulatory, antioxidant, anti-inflammatory and antiviral properties. In summary, our review highlights melatonin's promising antiviral properties across diverse settings. Melatonin's immunomodulatory and antiviral potential makes it a compelling candidate for further investigation, emphasising the need for rigorous clinical trials to establish its safety and efficacy against viral infections.


Asunto(s)
COVID-19 , Melatonina , Virosis , Animales , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Melatonina/farmacología , Melatonina/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto , SARS-CoV-2 , Virosis/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...