Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(19): e2311116121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38683977

RESUMEN

Conventionally, women are perceived to feel colder than men, but controlled comparisons are sparse. We measured the response of healthy, lean, young women and men to a range of ambient temperatures typical of the daily environment (17 to 31 °C). The Scholander model of thermoregulation defines the lower critical temperature as threshold of the thermoneutral zone, below which additional heat production is required to defend core body temperature. This parameter can be used to characterize the thermoregulatory phenotypes of endotherms on a spectrum from "arctic" to "tropical." We found that women had a cooler lower critical temperature (mean ± SD: 21.9 ± 1.3 °C vs. 22.9 ± 1.2 °C, P = 0.047), resembling an "arctic" shift compared to men. The more arctic profile of women was predominantly driven by higher insulation associated with more body fat compared to men, countering the lower basal metabolic rate associated with their smaller body size, which typically favors a "tropical" shift. We did not detect sex-based differences in secondary measures of thermoregulation including brown adipose tissue glucose uptake, muscle electrical activity, skin temperatures, cold-induced thermogenesis, or self-reported thermal comfort. In conclusion, the principal contributors to individual differences in human thermoregulation are physical attributes, including body size and composition, which may be partly mediated by sex.


Asunto(s)
Regulación de la Temperatura Corporal , Humanos , Femenino , Masculino , Regulación de la Temperatura Corporal/fisiología , Adulto , Regiones Árticas , Adulto Joven , Tejido Adiposo Pardo/fisiología , Tejido Adiposo Pardo/metabolismo , Caracteres Sexuales , Factores Sexuales , Temperatura Corporal/fisiología , Termogénesis/fisiología , Metabolismo Basal/fisiología
2.
Mol Metab ; 84: 101946, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38657735

RESUMEN

Our circadian world shapes much of metabolic physiology. In mice ∼40% of the light and ∼80% of the dark phase time is characterized by bouts of increased energy expenditure (EE). These ultradian bouts have a higher body temperature (Tb) and thermal conductance and contain virtually all of the physical activity and awake time. Bout status is a better classifier of mouse physiology than photoperiod, with ultradian bouts superimposed on top of the circadian light/dark cycle. We suggest that the primary driver of ultradian bouts is a brain-initiated transition to a higher defended Tb of the active/awake state. Increased energy expenditure from brown adipose tissue, physical activity, and cardiac work combine to raise Tb from the lower defended Tb of the resting/sleeping state. Thus, unlike humans, much of mouse metabolic physiology is episodic with large ultradian increases in EE and Tb that correlate with the active/awake state and are poorly aligned with circadian cycling.

3.
PLoS One ; 18(10): e0292610, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37812612

RESUMEN

OBJECTIVE: Otopetrin 1 (OTOP1) is a proton channel that is highly expressed in brown adipose tissue. We examined the physiology of Otop1-/- mice, which lack functional OTOP1. METHODS: Mice were studied by indirect calorimetry and telemetric ambulatory body temperature monitoring. Mitochondrial function was measured as oxygen consumption and extracellular acidification. RESULTS: Otop1-/- mice had similar body temperatures as control mice at baseline and in response to cold and hot ambient temperatures. However, in response to fasting the Otop1-/- mice exhibited an exaggerated hypothermia and hypometabolism. Similarly, in ex vivo tests of Otop1-/- brown adipose tissue mitochondrial function, there was no change in baseline oxygen consumption, but the oxygen consumption was reduced after maximal uncoupling with FCCP and increased upon stimulation with the ß3-adrenergic agonist CL316243. Mast cells also express Otop1, and Otop1-/- mice had intact, possibly greater hypothermia in response to mast cell activation by the adenosine A3 receptor agonist MRS5698. No increase in insulin resistance was observed in the Otop1-/- mice. CONCLUSIONS: Loss of OTOP1 does not change basal function of brown adipose tissue but affects stimulated responses.


Asunto(s)
Hipotermia , Animales , Ratones , Tejido Adiposo Pardo , Temperatura Corporal , Regulación de la Temperatura Corporal , Ayuno , Ratones Noqueados
4.
Mol Metab ; 71: 101699, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36858190

RESUMEN

OBJECTIVE: Physical activity is a major component of total energy expenditure (TEE) that exhibits extreme variability in mice. Our objective was to construct a general, physiology-based model of TEE to accurately quantify the energy cost of physical activity. METHODS: Spontaneous home cage physical activity, body temperature, TEE, and energy intake were measured with frequent sampling. The energy cost of activity was modeled considering six contributors to TEE (basal metabolic rate, thermic effect of food, body temperature, cold induced thermogenesis, physical activity, and body weight). An ambient temperature of 35 °C was required to remove the contribution from cold induced thermogenesis. Basal metabolic rate was adjusted for body temperature using a Q10 temperature coefficient. RESULTS: We developed a TEE model that robustly explains 70-80% of the variance in TEE at 35 °C while fitting only two parameters, the basal metabolic rate and the mass-specific energy cost per unit of physical activity, which averaged 60 cal/km/g body weight. In Ucp1-/- mice the activity cost was elevated by 60%, indicating inefficiency and increased muscle thermogenesis. The diurnal rhythm in TEE was quantitatively explained by the combined diurnal differences in physical activity, body temperature, and energy intake. Incorporating body temperature into human basal metabolic rate measurements significantly reduced the inter-individual variation. CONCLUSIONS: The physiology-based model of TEE allows quantifying the energy cost of physical activity. While applied here to mice, the model should be generally valid across species. Due to the effect of body temperature, we suggest that basal metabolic rate measurements be corrected to a reference body temperature, including in humans. Having an accurate cost of physical activity allows mechanistic dissection of disorders of energy homeostasis, including obesity.


Asunto(s)
Metabolismo Basal , Metabolismo Energético , Humanos , Animales , Ratones , Metabolismo Energético/fisiología , Peso Corporal/fisiología , Metabolismo Basal/fisiología , Obesidad , Termogénesis/fisiología
5.
Purinergic Signal ; 19(3): 551-564, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36781825

RESUMEN

Some non-adenosinergic drugs are reported to also act through adenosine receptors (ARs). We used mouse hypothermia, which can be induced by agonism at any of the four ARs, as an in vivo screen for adenosinergic effects. An AR contribution was identified when a drug caused hypothermia in wild type mice that was diminished in mice lacking all four ARs (quadruple knockout, QKO). Alternatively, an adenosinergic effect was identified if a drug potentiated adenosine-induced hypothermia. Four drugs (dipyridamole, nimodipine, cilostazol, cyclosporin A) increased the hypothermia caused by adenosine. Dipyridamole and nimodipine probably achieved this by inhibition of adenosine clearance via ENT1. Two drugs (cannabidiol, canrenoate) did not cause hypothermia in wild type mice. Four other drugs (nifedipine, ranolazine, ketamine, ethanol) caused hypothermia, but the hypothermia was unchanged in QKO mice indicating non-adenosinergic mechanisms. Zinc chloride caused hypothermia and hypoactivity; the hypoactivity was blunted in the QKO mice. Interestingly, the antidepressant amitriptyline caused hypothermia in wild type mice that was amplified in the QKO mice. Thus, we have identified adenosine-related effects for some drugs, while other candidates do not affect adenosine signaling by this in vivo assay. The adenosine-modulating drugs could be considered for repurposing based on predicted effects on AR activation.


Asunto(s)
Adenosina , Hipotermia , Ratones , Animales , Adenosina/farmacología , Hipotermia/inducido químicamente , Nimodipina/efectos adversos , Receptores Purinérgicos P1 , Dipiridamol/efectos adversos
6.
Temperature (Austin) ; 9(4): 306-309, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36339094
7.
Mol Metab ; 53: 101332, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34478905

RESUMEN

OBJECTIVE: To improve understanding of mouse energy homeostasis and its applicability to humans, we quantitated the effects of housing density on mouse thermal physiology in both sexes. METHODS: Littermate wild type and Brs3-null mice were single- or group- (three per cage) housed and studied by indirect calorimetry with continuous measurement of core body temperature, energy expenditure, physical activity, and food intake. RESULTS: At 23 °C, below thermoneutrality, single-housed males had a lower body temperature and unchanged metabolic rate compared to group-housed controls. In contrast, single-housed females maintained a similar body temperature to group-housed controls by increasing their metabolic rate. With decreasing ambient temperature below 27 °C, only group-housed mice decreased their heat conductance, likely due to huddling, thus interfering with the energy expenditure vs ambient temperature relationship described by Scholander. In a hot environment (35 °C), the single-housed mice were less heat stressed. Upon fasting, single-housed mice had larger reductions in body temperature, with male mice having more torpor episodes of similar duration and female mice having a similar number of torpor episodes that lasted longer. Qualitatively, the effects of housing density on thermal physiology of Brs3-null mice generally mimicked the effects in controls. CONCLUSIONS: Single housing is more sensitive than group housing for detecting thermal physiology phenotypes. Single housing increases heat loss and amplifies the effects of fasting or a cold environment. Male and female mice utilize different thermoregulatory strategies to respond to single housing.


Asunto(s)
Composición Corporal/fisiología , Temperatura Corporal , Receptores de Bombesina/metabolismo , Temperatura , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Bombesina/deficiencia
8.
Biochem Pharmacol ; 192: 114739, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34418353

RESUMEN

Hepatic insulin resistance (IR) and enhanced hepatic glucose production (HGP) are key features of type 2 diabetes (T2D), contributing to fasting hyperglycemia. Adenosine receptors (ARs) are G protein-coupled and expressed in hepatocytes. Here, we explored the role of hepatic Gi/o-coupled A1AR on insulin resistance and glucose fluxes associated with obesity. We generated a mouse model with hepatocyte-specific deletion of A1AR (A1LΔ/Δ), which was compared with whole body knockout of A1AR or A1AR/A3AR (both Gi-coupled). Selective deletion of hepatic A1AR resulted in a modest improvement in insulin sensitivity. In addition, HFD A1LΔ/Δ mice showed decreased fasting glucose levels. Hyperinsulinemic-euglycemic clamp studies demonstrated enhanced insulin sensitivity with no change in HGP in HFD A1LΔ/Δ mice. Similar to A1LΔ/Δ, fasting blood glucose levels were significantly reduced in whole body A1Δ/Δ and A1Δ/ΔA3Δ/Δ compared to wild-type mice. Taken together, our data support the concept that blocking hepatic A1AR may decrease fasting blood glucose levels without directly affecting hepatocyte glucose metabolism and insulin sensitivity.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Glucosa/metabolismo , Hepatocitos/metabolismo , Resistencia a la Insulina/fisiología , Receptor de Adenosina A1/deficiencia , Animales , Diabetes Mellitus Experimental/genética , Dieta Alta en Grasa/efectos adversos , Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Adenosina A1/genética
9.
eNeuro ; 8(4)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34326065

RESUMEN

Bombesin receptor subtype-3 (BRS3) is an orphan receptor that regulates energy homeostasis. We compared Brs3 driver mice with constitutive or inducible Cre recombinase activity. The constitutive BRS3-Cre mice show a reporter signal (Cre-dependent tdTomato) in the adult brain because of lineage tracing in the dentate gyrus, striatal patches, and indusium griseum, in addition to sites previously identified in the inducible BRS3-Cre mice (including hypothalamic and amygdala subregions, and parabrachial nucleus). We detected Brs3 reporter expression in the dentate gyrus at day 23 but not at postnatal day 1 or 5 months of age. Hypothalamic sites expressed reporter at all three time points, and striatal patches expressed Brs3 reporter at 1 day but not 5 months. Parabrachial nucleus Brs3 neurons project to the preoptic area, hypothalamus, amygdala, and thalamus. Both Cre recombinase insertions reduced Brs3 mRNA levels and BRS3 function, causing obesity phenotypes of different severity. These results demonstrate that driver mice should be characterized phenotypically and illustrate the need for knock-in strategies with less effect on the endogenous gene.


Asunto(s)
Integrasas , Receptores de Bombesina , Animales , Encéfalo/metabolismo , Hipotálamo/metabolismo , Integrasas/genética , Integrasas/metabolismo , Ratones , Ratones Transgénicos , Receptores de Bombesina/metabolismo
10.
Cell Metab ; 33(7): 1389-1403.e6, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34038711

RESUMEN

The preoptic area (POA) is a key brain region for regulation of body temperature (Tb), dictating thermogenic, cardiovascular, and behavioral responses that control Tb. Previously characterized POA neuronal populations all reduced Tb when activated. Using mice, we now identify POA neurons expressing bombesin-like receptor 3 (POABRS3) as a population whose activation increased Tb; inversely, acute inhibition of these neurons reduced Tb. POABRS3 neurons that project to either the paraventricular nucleus of the hypothalamus or the dorsomedial hypothalamus increased Tb, heart rate, and blood pressure via the sympathetic nervous system. Long-term inactivation of POABRS3 neurons caused increased Tb variability, overshooting both increases and decreases in Tb set point, with RNA expression profiles suggesting multiple types of POABRS3 neurons. Thus, POABRS3 neuronal populations regulate Tb and heart rate, contribute to cold defense, and fine-tune feedback control of Tb. These findings advance understanding of homeothermy, a defining feature of mammalian biology.


Asunto(s)
Regulación de la Temperatura Corporal , Frecuencia Cardíaca , Neuronas/fisiología , Área Preóptica/metabolismo , Receptores de Bombesina/metabolismo , Animales , Temperatura Corporal/genética , Regulación de la Temperatura Corporal/genética , Frecuencia Cardíaca/genética , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/citología , Neuronas/metabolismo , Área Preóptica/citología , Receptores de Bombesina/genética , Transducción de Señal/genética , Sistema Nervioso Simpático/fisiología , Termogénesis/genética
11.
Cell Metab ; 33(3): 462-463, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33657388

RESUMEN

Obesity is a risk factor for many cancers. Maguire et al. (2021) found increased creatine synthesis by the adipocytes adjacent to breast cancers in obese mice. The creatine is transported into the cancer cells, producing larger tumors, possibly due to greater energy availability.


Asunto(s)
Neoplasias de la Mama , Adipocitos , Animales , Femenino , Humanos , Ratones , Ratones Obesos , Obesidad/complicaciones
12.
J Clin Invest ; 131(7)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33621215

RESUMEN

The A3 adenosine receptor (A3AR) has emerged as a therapeutic target with A3AR agonists to tackle the global challenge of neuropathic pain, and investigation into its mode of action is essential for ongoing clinical development. Immune cell A3ARs, and their activation during pathology, modulate cytokine release. Thus, the use of immune cells as a cellular substrate for the pharmacological action of A3AR agonists is enticing, but unknown. The present study discovered that Rag-KO mice lacking T and B cells, as compared with WT mice, are insensitive to the anti-allodynic effects of A3AR agonists. Similar findings were observed in interleukin-10 and interleukin-10 receptor knockout mice. Adoptive transfer of CD4+ T cells from WT mice infiltrated the dorsal root ganglion (DRG) and restored A3AR agonist-mediated anti-allodynia in Rag-KO mice. CD4+ T cells from Adora3-KO or Il10-KO mice did not. Transfer of CD4+ T cells from WT mice, but not Il10-KO mice, into Il10-KO mice or Adora3-KO mice fully reinstated the anti-allodynic effects of A3AR activation. Notably, A3AR agonism reduced DRG neuron excitability when cocultured with CD4+ T cells in an IL-10-dependent manner. A3AR action on CD4+ T cells infiltrated in the DRG decreased phosphorylation of GluN2B-containing N-methyl-D-aspartate receptors at Tyr1472, a modification associated with regulating neuronal hypersensitivity. Our findings establish that activation of A3AR on CD4+ T cells to release IL-10 is required and sufficient evidence for the use of A3AR agonists as therapeutics.


Asunto(s)
Agonistas del Receptor de Adenosina A3/farmacología , Linfocitos T CD4-Positivos/inmunología , Ganglios Espinales/inmunología , Interleucina-10/inmunología , Neuralgia/tratamiento farmacológico , Neuronas/inmunología , Receptor de Adenosina A3/inmunología , Animales , Linfocitos B/inmunología , Linfocitos B/patología , Linfocitos T CD4-Positivos/patología , Ganglios Espinales/patología , Interleucina-10/genética , Ratones , Ratones Noqueados , Neuralgia/genética , Neuralgia/inmunología , Neuralgia/patología , Neuronas/patología , Receptor de Adenosina A3/genética
13.
Med ; 2(7): 794-796, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-35590217

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a growing public health problem that progresses to serious liver disease in some patients and for which there are no FDA-approved therapies. In this issue of Med, Akinci et al.1 present encouraging preliminary data showing that treatment with recombinant leptin has beneficial effects on NAFLD.


Asunto(s)
Leptina , Enfermedad del Hígado Graso no Alcohólico , Humanos , Leptina/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico
14.
PLoS One ; 15(12): e0243986, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33326493

RESUMEN

Extracellular adenosine, a danger signal, can cause hypothermia. We generated mice lacking neuronal adenosine A1 receptors (A1AR, encoded by the Adora1 gene) to examine the contribution of these receptors to hypothermia. Intracerebroventricular injection of the selective A1AR agonist (Cl-ENBA, 5'-chloro-5'-deoxy-N6-endo-norbornyladenosine) produced hypothermia, which was reduced in mice with deletion of A1AR in neurons. A non-brain penetrant A1AR agonist [SPA, N6-(p-sulfophenyl) adenosine] also caused hypothermia, in wild type but not mice lacking neuronal A1AR, suggesting that peripheral neuronal A1AR can also cause hypothermia. Mice expressing Cre recombinase from the Adora1 locus were generated to investigate the role of specific cell populations in body temperature regulation. Chemogenetic activation of Adora1-Cre-expressing cells in the preoptic area did not change body temperature. In contrast, activation of Adora1-Cre-expressing dorsomedial hypothalamus cells increased core body temperature, concordant with agonism at the endogenous inhibitory A1AR causing hypothermia. These results suggest that A1AR agonism causes hypothermia via two distinct mechanisms: brain neuronal A1AR and A1AR on neurons outside the blood-brain barrier. The variety of mechanisms that adenosine can use to induce hypothermia underscores the importance of hypothermia in the mouse response to major metabolic stress or injury.


Asunto(s)
Hipotermia/metabolismo , Receptor de Adenosina A1/metabolismo , Agonistas del Receptor de Adenosina A1/farmacología , Animales , Hipotálamo/metabolismo , Hipotálamo/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Nervios Periféricos/metabolismo , Nervios Periféricos/fisiopatología
15.
Am J Physiol Endocrinol Metab ; 319(2): E438-E446, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32691633

RESUMEN

Understanding mouse thermal physiology informs the usefulness of mice as models of human disease. It is widely assumed that the mouse tail contributes greatly to heat loss (as it does in rat), but this has not been quantitated. We studied C57BL/6J mice after tail amputation. Tailless mice housed at 22°C did not differ from littermate controls in body weight, lean or fat content, or energy expenditure. With acute changes in ambient temperature from 19 to 39°C, tailless and control mice demonstrated similar body temperatures (Tb), metabolic rates, and heat conductances and no difference in thermoneutral point. Treatment with prazosin, an α1-adrenergic antagonist and vasodilator, increased tail temperature in control mice by up to 4.8 ± 0.8°C. Comparing prazosin treatment in tailless and control mice suggested that the tail's contribution to total heat loss was a nonsignificant 3.4%. Major heat stress produced by treatment at 30°C with CL316243, a ß3-adrenergic agonist, increased metabolic rate and Tb and, at a matched increase in metabolic rate, the tailless mice showed a 0.72 ± 0.14°C greater Tb increase and 7.6% lower whole body heat conductance. Thus, the mouse tail is a useful biomarker of vasodilation and thermoregulation, but in our experiments contributes only 5-8% of whole body heat dissipation, less than the 17% reported for rat. Heat dissipation through the tail is important under extreme scenarios such as pharmacological activation of brown adipose tissue; however, non-tail contributions to heat loss may have been underestimated in the mouse.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Modelos Animales , Cola (estructura animal)/fisiología , Antagonistas de Receptores Adrenérgicos alfa 1 , Amputación Quirúrgica , Animales , Composición Corporal/fisiología , Superficie Corporal , Regulación de la Temperatura Corporal/efectos de los fármacos , Peso Corporal/fisiología , Metabolismo Energético/fisiología , Respuesta al Choque Térmico , Ratones , Ratones Endogámicos C57BL , Prazosina/farmacología , Ratas , Cola (estructura animal)/cirugía , Vasodilatación/fisiología
16.
J Med Chem ; 63(8): 4334-4348, 2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32271569

RESUMEN

Dopamine-derived N6-substituents, compared to N6-(2-phenylethyl), in truncated (N)-methanocarba (bicyclo[3.1.0]hexyl) adenosines favored high A3 adenosine receptor (AR) affinity/selectivity, e.g., C2-phenylethynyl analogue 15 (MRS7591, Ki = 10.9/17.8 nM, at human/mouse A3AR). 15 was a partial agonist in vitro (hA3AR, cAMP inhibition, 31% Emax; mA3AR, [35S]GTP-γ-S binding, 16% Emax) and in vivo and also antagonized hA3AR in vitro. Distal H-bonding substitutions of the N6-(2-phenylethyl) moiety particularly enhanced mA3AR affinity by polar interactions with the extracellular loops, predicted using docking and molecular dynamics simulation with newly constructed mA3AR and hA3AR homology models. These hybrid models were based on an inactive antagonist-bound hA1AR structure for the upper part of TM2 and an agonist-bound hA2AAR structure for the remaining TM portions. These species-independent A3AR-selective nucleosides are low efficacy partial agonists and novel, nuanced modulators of the A3AR, a drug target of growing interest.


Asunto(s)
Agonistas del Receptor de Adenosina A3/química , Agonistas del Receptor de Adenosina A3/metabolismo , Nucleósidos/química , Nucleósidos/metabolismo , Receptor de Adenosina A3/química , Receptor de Adenosina A3/metabolismo , Agonistas del Receptor de Adenosina A3/farmacología , Animales , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nucleósidos/farmacología , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Estructura Secundaria de Proteína
17.
Cells ; 9(4)2020 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-32295065

RESUMEN

Many ligands directly target adenosine receptors (ARs). Here we review the effects of noncanonical AR drugs on adenosinergic signaling. Non-AR mechanisms include raising adenosine levels by inhibiting adenosine transport (e.g., ticagrelor, ethanol, and cannabidiol), affecting intracellular metabolic pathways (e.g., methotrexate, nicotinamide riboside, salicylate, and 5-aminoimidazole-4-carboxamide riboside), or undetermined means (e.g., acupuncture). However, other compounds bind ARs in addition to their canonical 'on-target' activity (e.g., mefloquine). The strength of experimental support for an adenosine-related role in a drug's effects varies widely. AR knockout mice are the 'gold standard' method for investigating an AR role, but few drugs have been tested on these mice. Given the interest in AR modulation for treatment of cancer, CNS, immune, metabolic, cardiovascular, and musculoskeletal conditions, it is informative to consider AR and non-AR adenosinergic effects of approved drugs and conventional treatments.


Asunto(s)
Preparaciones Farmacéuticas/química , Receptores Purinérgicos P1/metabolismo , Animales , Humanos , Ratones , Transducción de Señal
18.
Mol Metab ; 36: 100969, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32229422

RESUMEN

OBJECTIVE: Bombesin-like receptor 3 (BRS3) is an orphan receptor and Brs3 knockout mice develop obesity with increased food intake and reduced resting metabolic rate and body temperature. The neuronal populations contributing to these effects were examined. METHODS: We studied energy metabolism in mice with Cre-mediated recombination causing 1) loss of BRS3 selectively in SIM1- or MC4R-expressing neurons or 2) selective re-expression of BRS3 from a null background in these neurons. RESULTS: The deletion of BRS3 in MC4R neurons increased body weight/adiposity, metabolic efficiency, and food intake, and reduced insulin sensitivity. BRS3 re-expression in these neurons caused partial or no reversal of these traits. However, these observations were confounded by an obesity phenotype caused by the Mc4r-Cre allele, independent of its recombinase activity. The deletion of BRS3 in SIM1 neurons increased body weight/adiposity and food intake, but not to the levels of the global null. The re-expression of BRS3 in SIM1 neurons reduced body weight/adiposity and food intake, but not to wild type levels. The deletion of BRS3 in either MC4R- or SIM1-expressing neurons affected body temperature, with re-expression in either population reversing the null phenotype. MK-5046, a BRS3 agonist, increases light phase body temperature in wild type, but not Brs3 null, mice and BRS3 re-expression in either population restored response to MK-5046. CONCLUSIONS: BRS3 in both MC4R- and SIM1-expressing neurons contributes to regulation of body weight/adiposity, insulin sensitivity, food intake, and body temperature.


Asunto(s)
Metabolismo Energético/fisiología , Neuronas/metabolismo , Receptores de Bombesina/metabolismo , Adiposidad/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Temperatura Corporal/fisiología , Peso Corporal , Encéfalo/metabolismo , Ingestión de Alimentos/fisiología , Femenino , Homeostasis/fisiología , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/fisiología , Obesidad/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Receptor de Melanocortina Tipo 4/metabolismo , Receptores de Bombesina/genética , Proteínas Represoras/metabolismo
19.
Cell Rep ; 31(2): 107501, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32294435

RESUMEN

Human and mouse thermal physiology differ due to dissimilar body sizes. Unexpectedly, in mice we found no ambient temperature zone where both metabolic rate and body temperature were constant. Body temperature began increasing once cold-induced thermogenesis was no longer required. This result reproduced in male, female, C57BL/6J, 129, chow-fed, diet-induced obese, and ob/ob mice as well as Trpv1-/-;Trpm8-/-;Trpa1-/- mice lacking thermal sensory channels. During the resting-light phase, the energy expenditure minimum spanned ∼4°C of ambient temperature, whereas in the active-dark phase it approximated a point. We propose the concept of a thermoneutral point (TNP), a discrete ambient temperature below which energy expenditure increases and above which body temperature increases. Humans do not have a TNP. As studied, the mouse TNP is ∼29°C in light phase and ∼33°C in dark phase. These observations inform how thermoneutrality is defined and how mice are used to model human energy physiology and drug development.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Metabolismo Energético/fisiología , Termogénesis/fisiología , Tejido Adiposo/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Composición Corporal/fisiología , Tamaño Corporal/fisiología , Temperatura Corporal/fisiología , Peso Corporal/fisiología , Frío , Ingestión de Energía , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Obesidad/metabolismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...