Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuro Oncol ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38770568

RESUMEN

DNA damage response (DDR) mechanisms are critical to maintenance of overall genomic stability, and their dysfunction can contribute to oncogenesis. Significant advances in our understanding of DDR pathways have raised the possibility of developing therapies that exploit these processes. In this expert-driven consensus review, we examine mechanisms of response to DNA damage, progress in development of DDR inhibitors in IDH-wild-type glioblastoma and IDH-mutant gliomas, and other important considerations such as biomarker development, preclinical models, combination therapies, mechanisms of resistance and clinical trial design considerations.

2.
Sci Data ; 11(1): 496, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750041

RESUMEN

Meningiomas are the most common primary intracranial tumors and can be associated with significant morbidity and mortality. Radiologists, neurosurgeons, neuro-oncologists, and radiation oncologists rely on brain MRI for diagnosis, treatment planning, and longitudinal treatment monitoring. However, automated, objective, and quantitative tools for non-invasive assessment of meningiomas on multi-sequence MR images are not available. Here we present the BraTS Pre-operative Meningioma Dataset, as the largest multi-institutional expert annotated multilabel meningioma multi-sequence MR image dataset to date. This dataset includes 1,141 multi-sequence MR images from six sites, each with four structural MRI sequences (T2-, T2/FLAIR-, pre-contrast T1-, and post-contrast T1-weighted) accompanied by expert manually refined segmentations of three distinct meningioma sub-compartments: enhancing tumor, non-enhancing tumor, and surrounding non-enhancing T2/FLAIR hyperintensity. Basic demographic data are provided including age at time of initial imaging, sex, and CNS WHO grade. The goal of releasing this dataset is to facilitate the development of automated computational methods for meningioma segmentation and expedite their incorporation into clinical practice, ultimately targeting improvement in the care of meningioma patients.


Asunto(s)
Imagen por Resonancia Magnética , Neoplasias Meníngeas , Meningioma , Meningioma/diagnóstico por imagen , Humanos , Neoplasias Meníngeas/diagnóstico por imagen , Masculino , Femenino , Procesamiento de Imagen Asistido por Computador/métodos , Persona de Mediana Edad , Anciano
3.
Adv Radiat Oncol ; 9(6): 101475, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38690297

RESUMEN

Purpose: Clinical and imaging surveillance of patients with brain metastases is important after stereotactic radiosurgery (SRS) because many will experience intracranial progression (ITCP) requiring multidisciplinary management. The prognostic significance of neurologic symptoms at the time of ITCP is poorly understood. Methods and Materials: This was a multi-institutional, retrospective cohort study from 2015 to 2020, including all patients with brain metastases completing an initial course of SRS. The primary outcome was overall survival (OS) by presence of neurologic symptoms at ITCP. OS, freedom from ITCP (FF-ITCP), and freedom from symptomatic ITCP (FF-SITCP) were assessed via Kaplan-Meier method. Cox proportional hazard models tested parameters impacting FF-ITCP and FF-SITCP. Results: Among 1383 patients, median age was 63.4 years, 55% were female, and common primaries were non-small cell lung (49%), breast (15%), and melanoma (9%). At a median follow-up of 8.72 months, asymptomatic and symptomatic ITCP were observed in 504 (36%) and 194 (14%) patients, respectively. The majority of ITCP were distant ITCP (79.5%). OS was worse with SITCP (median, 10.2 vs 17.9 months, P < .001). SITCP was associated with clinical factors including total treatment volume (P = .012), melanoma histology (P = .001), prior whole brain radiation therapy (P = .003), number of brain metastases (P < .001), interval of 1 to 2 years from primary and brain metastasis diagnosis (P = .012), controlled extracranial disease (P = .042), and receipt of pre-SRS chemotherapy (P = .015). Patients who were younger and received post-SRS chemotherapy (P = .001), immunotherapy (P < .001), and targeted or small-molecule inhibitor therapy (P < .026) had better FF-SITCP. Conclusions: In this cohort study of patients with brain metastases completing SRS, neurologic symptoms at ITCP is prognostic for OS. This data informs post-SRS surveillance in clinical practice as well as future prospective studies needed in the modern management of brain metastases.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38615888

RESUMEN

PURPOSE: To develop a novel deep ensemble learning model for accurate prediction of brain metastasis (BM) local control outcomes after stereotactic radiosurgery (SRS). METHODS AND MATERIALS: A total of 114 brain metastases (BMs) from 82 patients were evaluated, including 26 BMs that developed biopsy-confirmed local failure post-SRS. The SRS spatial dose distribution (Dmap) of each BM was registered to the planning contrast-enhanced T1 (T1-CE) magnetic resonance imaging (MRI). Axial slices of the Dmap, T1-CE, and planning target volume (PTV) segmentation (PTVseg) intersecting the BM center were extracted within a fixed field of view determined by the 60% isodose volume in Dmap. A spherical projection was implemented to transform planar image content onto a spherical surface using multiple projection centers, and the resultant T1-CE/Dmap/PTVseg projections were stacked as a 3-channel variable. Four Visual Geometry Group (VGG-19) deep encoders were used in an ensemble design, with each submodel using a different spherical projection formula as input for BM outcome prediction. In each submodel, clinical features after positional encoding were fused with VGG-19 deep features to generate logit results. The ensemble's outcome was synthesized from the 4 submodel results via logistic regression. In total, 10 model versions with random validation sample assignments were trained to study model robustness. Performance was compared with (1) a single VGG-19 encoder, (2) an ensemble with a T1-CE MRI as the sole image input after projections, and (3) an ensemble with the same image input design without clinical feature inclusion. RESULTS: The ensemble model achieved an excellent area under the receiver operating characteristic curve (AUCROC: 0.89 ± 0.02) with high sensitivity (0.82 ± 0.05), specificity (0.84 ± 0.11), and accuracy (0.84 ± 0.08) results. This outperformed the MRI-only VGG-19 encoder (sensitivity: 0.35 ± 0.01, AUCROC: 0.64 ± 0.08), the MRI-only deep ensemble (sensitivity: 0.60 ± 0.09, AUCROC: 0.68 ± 0.06), and the 3-channel ensemble without clinical feature fusion (sensitivity: 0.78 ± 0.08, AUCROC: 0.84 ± 0.03). CONCLUSIONS: Facilitated by the spherical image projection method, a deep ensemble model incorporating Dmap and clinical variables demonstrated excellent performance in predicting BM post-SRS local failure. Our novel approach could improve other radiation therapy outcome models and warrants further evaluation.

5.
Brain Sci ; 14(2)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38391718

RESUMEN

Both glioblastoma (GBM) and dementia are devastating diseases with limited treatments that are usually not curative. Having clinically diagnosed dementia with an associated biopsy-proven etiology and a coexisting GBM diagnosis is a rare occurrence. The relationship between the development of neurodegenerative dementia and GBM is unclear, as there are conflicting reports in the literature. We present two cases of simultaneous biopsy-proven dementia, one with Alzheimer's disease (AD) and GBM, and one with cerebral amyloid angiopathy (CAA) and GBM. We discuss how these diseases may be associated. Whether one pathologic process begins first or develops concurrently is unknown, but certain molecular pathways of dementia and GBM appear directly related while others inversely related. Further investigations of these close molecular relationships between dementia and GBM could lead to development of improved diagnostic tools and therapeutic interventions for both diseases.

6.
Neuro Oncol ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285162

RESUMEN

A majority of cancers (~85%) activate the enzyme telomerase to maintain telomere length over multiple rounds of cellular division. Telomerase-negative cancers activate a distinct, telomerase-independent mechanism of telomere maintenance termed Alternative lengthening of telomeres (ALT). ALT uses homologous recombination to maintain telomere length and exhibits features of break-induced DNA replication. In malignant gliomas, the activation of either telomerase or ALT is nearly ubiquitous in pediatric and adult tumors, and the frequency with which these distinct telomere maintenance mechanisms is activated varies according to genetically-defined glioma subtypes. In this review, we summarize the current state of the field of telomere maintenance mechanisms (TMMs) and their relevance to glioma biology and therapy. We review the genetic alterations and molecular mechanisms leading to telomerase activation or ALT induction in pediatric and adult gliomas. With this background, we review emerging evidence on strategies for targeting TMMs for glioma therapy. Finally, we comment on critical gaps and issues for moving the field forward to translate our improved understanding of glioma telomere maintenance into better therapeutic strategies for patients.

7.
J Clin Invest ; 134(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38226619

RESUMEN

Since the discovery that cGAS/STING recognizes endogenous DNA released from dying cancer cells and induces type I interferon and antitumor T cell responses, efforts to understand and therapeutically target the STING pathway in cancer have ensued. Relative to other cancer types, the glioma immune microenvironment harbors few infiltrating T cells, but abundant tumor-associated myeloid cells, possibly explaining disappointing responses to immune checkpoint blockade therapies in cohorts of patients with glioblastoma. Notably, unlike most extracranial tumors, STING expression is absent in the malignant compartment of gliomas, likely due to methylation of the STING promoter. Nonetheless, several preclinical studies suggest that inducing cGAS/STING signaling in the glioma immune microenvironment could be therapeutically beneficial, and cGAS/STING signaling has been shown to mediate inflammatory and antitumor effects of other modalities either in use or being developed for glioblastoma therapy, including radiation, tumor-treating fields, and oncolytic virotherapy. In this Review, we discuss cGAS/STING signaling in gliomas, its implications for glioma immunobiology, compartment-specific roles for STING signaling in influencing immune surveillance, and efforts to target STING signaling - either directly or indirectly - for antiglioma therapy.


Asunto(s)
Glioblastoma , Glioma , Humanos , Glioblastoma/terapia , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Transducción de Señal , ADN , Microambiente Tumoral
8.
Adv Radiat Oncol ; 9(1): 101320, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38260227

RESUMEN

Purpose: Genetic variants affecting the radiation response protein ataxia-telangiectasia mutated (ATM) have been associated with increased adverse effects of radiation but also with improved local control after conventional radiation therapy. However, it is unknown whether ATM variants affect rates of radionecrosis (RN) and local intracranial progression (LIP) after stereotactic radiosurgery (SRS) for brain metastases. Methods and Materials: Patients undergoing an initial course of SRS for non-small cell lung cancer (NSCLC) brain metastases at a single institution were retrospectively identified. Kaplan-Meier estimates were calculated and Cox proportional hazards testing was performed based on ATM variant status. Results: A total of 541 patients completed SRS for brain metastasis secondary to NSCLC, of whom 260 completed molecular profiling. Variants of ATM were identified in 36 cases (13.8%). Among patients who completed molecular profiling, RN incidence was 4.9% (95% CI, 1.6%-8.2%) at 6 months and 9.9% (95% CI, 4.8%-15.0%) at 12 months. Incidence of RN was not significantly increased among patients with ATM variants, with an RN incidence of 5.3% (95% CI, 0.0%-15.3%) at both 6 and 12 months (P = .46). For all patients who completed genomic profiling, LIP was 5.4% (95% CI, 2.4%-8.4%) at 6 months and 9.8% (5.5%-14.1%) at 12 months. A significant improvement in LIP was not detected among patients with ATM variants, with an LIP incidence of 3.1% (0.0%-9.1%) at both 6 and 12 months (P = .26). Although differences according to ATM variant type (pathologic variant or variant of unknown significance) did not reach significance, no patients with ATM pathologic variants experienced LIP. Conclusions: We did not detect significant associations between ATM variant status and RN or LIP after SRS for NSCLC brain metastases. The current data set allows estimation of patient cohort sizes needed to power future investigations to identify genetic variants that associate with significant differences in outcomes after SRS.

9.
Int J Radiat Oncol Biol Phys ; 118(5): 1507-1518, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38097090

RESUMEN

PURPOSE: The intracranial benefit of offering dual immune-checkpoint inhibition (D-ICPI) with ipilimumab and nivolumab to patients with melanoma or non-small cell lung cancer (NSCLC) receiving stereotactic radiosurgery (SRS) for brain metastases (BMs) is unknown. We hypothesized that D-ICPI improves local control compared with SRS alone. METHODS AND MATERIALS: Patients with melanoma or NSCLC treated with SRS from 2014 to 2022 were evaluated. Patients were stratified by treatment with D-ICPI, single ICPI (S-ICPI), or SRS alone. Local recurrence, intracranial progression (IP), and overall survival were estimated using competing risk and Kaplan-Meier analyses. IP included both local and distant intracranial recurrence. RESULTS: Two hundred eighty-eight patients (44% melanoma, 56% NSCLC) with 1,704 BMs were included. Fifty-three percent of patients had symptomatic BMs. The median follow-up was 58.8 months. Twelve-month local control rates with D-ICPI, S-ICPI, and SRS alone were 94.73% (95% CI, 91.11%-96.90%), 91.74% (95% CI, 89.30%-93.64%), and 88.26% (95% CI, 84.07%-91.41%). On Kaplan-Meier analysis, only D-ICPI was significantly associated with reduced local recurrence (P = .0032). On multivariate Cox regression, D-ICPI (hazard ratio [HR], 0.4003; 95% CI, 0.1781-0.8728; P = .0239) and planning target volume (HR, 1.022; 95% CI, 1.004-1.035; P = .0059) correlated with local control. One hundred seventy-three (60%) patients developed IP. The 12-month cumulative incidence of IP was 41.27% (95% CI, 30.27%-51.92%), 51.86% (95% CI, 42.78%-60.19%), and 57.15% (95% CI, 44.98%-67.59%) after D-ICPI, S-ICPI, and SRS alone. On competing risk analysis, only D-ICPI was significantly associated with reduced IP (P = .0408). On multivariate Cox regression, D-ICPI (HR, 0.595; 95% CI, 0.373-0.951; P = .0300) and presentation with >10 BMs (HR, 2.492; 95% CI, 1.668-3.725; P < .0001) remained significantly correlated with IP. The median overall survival after D-ICPI, S-ICPI, and SRS alone was 26.1 (95% CI, 15.5-40.7), 21.5 (16.5-29.6), and 17.5 (11.3-23.8) months. S-ICPI, fractionation, and histology were not associated with clinical outcomes. There was no difference in hospitalizations or neurologic adverse events between cohorts. CONCLUSIONS: The addition of D-ICPI for patients with melanoma and NSCLC undergoing SRS is associated with improved local and intracranial control. This appears to be an effective strategy, including for patients with symptomatic or multiple BMs.


Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Melanoma , Radiocirugia , Humanos , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Melanoma/radioterapia , Inhibidores de Puntos de Control Inmunológico , Radiocirugia/métodos , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/etiología , Estudios Retrospectivos , Neoplasias Encefálicas/secundario
10.
Commun Biol ; 6(1): 1143, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37950065

RESUMEN

Enzymes with novel functions are needed to enable new organic synthesis techniques. Drawing inspiration from gain-of-function cancer mutations that functionally alter proteins and affect cellular metabolism, we developed METIS (Mutated Enzymes from Tumors In silico Screen). METIS identifies metabolism-altering cancer mutations using mutation recurrence rates and protein structure. We used METIS to screen 298,517 cancer mutations and identify 48 candidate mutations, including those previously identified to alter enzymatic function. Unbiased metabolomic profiling of cells exogenously expressing a candidate mutant (OGDHLp.A400T) supports an altered phenotype that boosts in vitro production of xanthosine, a pharmacologically useful chemical that is currently produced using unsustainable, water-intensive methods. We then applied METIS to 49 million cancer mutations, yielding a refined set of candidates that may impart novel enzymatic functions or contribute to tumor progression. Thus, METIS can be used to identify and catalog potentially-useful cancer mutations for green chemistry and therapeutic applications.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Mutación
11.
Radiat Res ; 200(6): 587-592, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37990957

RESUMEN

Medulloblastoma is the most common malignant brain tumor of children. Although standard of care radiotherapy for pediatric medulloblastoma (PM) can lead to long-term remission or cure in many patients, it can also cause life-long cognitive impairment and other adverse effects. The pathophysiological mechanisms involved in radiation-induced cerebral damage are incompletely understood, and their elucidation may lead to interventions that mitigate radiation toxicity. To explore the mechanisms of radiation-induced cerebral damage, transgenic mouse models of PM and non-tumor-bearing controls were exposed to radiation doses that ranged from 0 to 30 Gy. Between 0-20 Gy, a significant dose-dependent reduction in tumor-associated hydrocephalus and increase in overall survival were observed. However, at 30 Gy, hydrocephalus incidence increased and median overall survival fell to near-untreated levels. Immunohistochemistry revealed that both tumor-bearing and non-tumor-bearing mice treated with 30 Gy of radiation had significantly more reactive astrocytes and microvascular damage compared to untreated controls. This effect was persistent across mice that were given 1 and 2 weeks of recovery time after irradiation. Our data suggest that radiation therapy promotes neural death by inducing long-term neuroinflammation in PM, suggesting radiation delivery methods that limit inflammation may be effective at widening the therapeutic window of radiation therapy in PM patients.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Hidrocefalia , Meduloblastoma , Traumatismos por Radiación , Humanos , Niño , Ratones , Animales , Meduloblastoma/genética , Meduloblastoma/radioterapia , Neoplasias Encefálicas/radioterapia , Traumatismos por Radiación/etiología , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/radioterapia , Neoplasias Cerebelosas/complicaciones , Hidrocefalia/complicaciones
12.
Neurooncol Adv ; 5(1): vdad095, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781087

RESUMEN

Background: Medulloblastoma is the most common malignant pediatric brain tumor, and leptomeningeal dissemination (LMD) of medulloblastoma both portends a poorer prognosis at diagnosis and is incurable at recurrence. The biological mechanisms underlying LMD are unclear. The Abelson (ABL) tyrosine kinase family members, ABL1 and ABL2, have been implicated in cancer cell migration, invasion, adhesion, metastasis, and chemotherapy resistance, and are upstream mediators of the oncogene c-MYC in fibroblasts and lung cancer cells. However, their role in medulloblastoma has not yet been explored. The purpose of this work was to elucidate the role of ABL1/2 in medulloblastoma LMD. Methods: ABL1 and ABL2 mRNA expression of patient specimens was analyzed. shRNA knockdowns of ABL1/2 and pharmacologic inhibition of ABL1/2 were used for in vitro and in vivo analyses of medulloblastoma LMD. RNA sequencing of ABL1/2 genetic knockdown versus scrambled control medulloblastoma was completed. Results: ABL1/2 mRNA is highly expressed in human medulloblastoma and pharmacologic inhibition of ABL kinases resulted in cytotoxicity. Knockdown of ABL1/2 resulted in decreased adhesion of medulloblastoma cells to the extracellular matrix protein, vitronectin (P = .0013), and significantly decreased tumor burden in a mouse model of medulloblastoma LMD with improved overall survival (P = .0044). Furthermore, both pharmacologic inhibition of ABL1/2 and ABL1/2 knockdown resulted in decreased expression of c-MYC, identifying a putative signaling pathway, and genes/pathways related to oncogenesis and neurodevelopment were differentially expressed between ABL1/2 knockdown and control medulloblastoma cells. Conclusions: ABL1 and ABL2 have potential roles in medulloblastoma LMD upstream of c-MYC expression.

13.
bioRxiv ; 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37904990

RESUMEN

Diffuse midline gliomas (DMGs) are lethal brain tumors characterized by p53-inactivating mutations and oncohistone H3.3K27M mutations that rewire the cellular response to genotoxic stress, which presents therapeutic opportunities. We used RCAS/tv-a retroviruses and Cre recombinase to inactivate p53 and induce K27M in the native H3f3a allele in a lineage- and spatially-directed manner, yielding primary mouse DMGs. Genetic or pharmacologic disruption of the DNA damage response kinase Ataxia-telangiectasia mutated (ATM) enhanced the efficacy of focal brain irradiation, extending mouse survival. This finding suggests that targeting ATM will enhance the efficacy of radiation therapy for p53-mutant DMG but not p53-wildtype DMG. We used spatial in situ transcriptomics and an allelic series of primary murine DMG models with different p53 mutations to identify transactivation-independent p53 activity as a key mediator of such radiosensitivity. These studies deeply profile a genetically faithful and versatile model of a lethal brain tumor to identify resistance mechanisms for a therapeutic strategy currently in clinical trials.

14.
Oncogene ; 42(44): 3274-3286, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37741952

RESUMEN

Pooled genetic screens represent a powerful approach to identify vulnerabilities in cancer. Here we used pooled CRISPR/Cas9-based approaches to identify vulnerabilities associated with telomerase reverse transcriptase (TERT) promoter mutations (TPMs) found in >80% of glioblastomas. We first developed a platform to detect perturbations that cause long-term growth defects in a TPM-mutated glioblastoma cell line. However, we could not detect dependencies on either TERT itself or on an E-twenty six transcription (ETS) factor known to activate TPMs. To explore this finding, we cataloged TPM status for 441 cell lines and correlated this with genome-wide screening data. We found that TPM status was not associated with differential dependency on TERT, but that E-twenty six (ETS) transcription factors represent key dependencies in both TPM+ and TPM- lines. Further, we found that TPMs are associated with expression of gene programs regulated by a wide array of ETS-factors in both cell lines and primary glioblastoma tissues. This work contributes a unique TPM cell line reagent, establishes TPM status for many deeply-profiled cell lines, and catalogs TPM-associated vulnerabilities. The results highlight challenges in executing genetic screens to detect TPM-specific vulnerabilities, and suggest redundancy in the genetic network that regulates TPM function with therapeutic implications.


Asunto(s)
Glioblastoma , Telomerasa , Humanos , Glioblastoma/genética , Redes Reguladoras de Genes , Regiones Promotoras Genéticas/genética , Mutación , Factores de Transcripción/genética , Telomerasa/genética , Línea Celular Tumoral
15.
Neurooncol Adv ; 5(1): vdad097, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37706200

RESUMEN

Background: Primary central nervous system lymphoma (PCNSL) is an aggressive diffuse large B-cell lymphoma. Treatment approaches are historically associated with neurotoxicity, particularly with high-dose whole-brain radiotherapy (WBRT). We hypothesized that reduced dose-WBRT (rd-WBRT) followed by a stereotactic radiosurgery (SRS) boost could provide durable disease control without significant adverse effects. Methods: We retrospectively reviewed PCNSL patients treated with rd-WBRT plus an SRS boost at Duke University between 2008 and 2021. Progression-free survival and overall survival (OS) were estimated using competing risk and Kaplan-Meier methods. Results: We identified 23 patients with pathologically confirmed PCNSL. Median age at diagnosis was 69 years (Q1Q3: 52-74) and median Karnofsky Performance Scale (KPS) was 80 (Q1Q3: 70-80). Median follow-up was 21 months. Median doses for rd-WBRT and SRS were 23.4 Gy (Q1Q3: 23.4-23.4) and 12 Gy (Q1Q3: 12-12.5), respectively. The cumulative incidence of intracranial progression at 2 years was 23% (95% CI: 8-42). Six patients (26%) developed distant radiographic progression while 2 patients (9%) developed both distant and local progression. Ten patients (44%) were alive without progression at last follow-up. By Kaplan-Meier estimate, the 2-year OS was 69% (95% CI: 46-84). There were no reported grade 3 + radiation-induced toxicities. Conclusions: The combination of rd-WBRT with an SRS boost appears well-tolerated with durable intracranial control. This approach may represent a treatment option for select patients, such as those with progressive or refractory disease. Further prospective studies are needed to validate these findings and determine whether this approach could be incorporated into consolidation strategies.

16.
Cancers (Basel) ; 15(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37568717

RESUMEN

Glioblastoma (GBM) is the most common malignant primary brain tumor in adults. Despite standard therapies, including resection and chemoradiation, recurrence is virtually inevitable. Current treatment for recurrent glioblastoma (rGBM) is rapidly evolving, and emerging therapies aimed at targeting primary GBM are often first tested in rGBM to demonstrate safety and feasibility, which, in recent years, has primarily been in the form of immunotherapy. The purpose of this review is to highlight progress in clinical trials of immunotherapy for rGBM, including immune checkpoint blockade, oncolytic virotherapy, chimeric antigen receptor (CAR) T-cell therapy, cancer vaccine and immunotoxins. Three independent reviewers covered literature, published between the years 2000 and 2022, in various online databases. In general, the efficacy of immunotherapy in rGBM remains uncertain, and is limited to subsets/small cohorts of patients, despite demonstrating feasibility in early-stage clinical trials. However, considerable progress has been made in understanding the mechanisms that may preclude rGBM patients from responding to immunotherapy, as well as in developing new approaches/combination strategies that may inspire optimism for the utility of immunotherapy in this devastating disease. Continued trials are necessary to further assess the best therapeutic avenues and ascertain which treatments might benefit each patient individually.

17.
Adv Radiat Oncol ; 8(4): 101211, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152484

RESUMEN

Purpose: Existing brain metastasis prognostic models do not identify patients at risk of very poor survival after radiation therapy (RT). Identifying patient and disease risk factors for 30-day mortality (30-DM) after RT may help identify patients who would not benefit from RT. Methods and Materials: All patients who received stereotactic radiosurgery (SRS) or whole-brain RT (WBRT) for brain metastases from January 1, 2017, to September 30, 2020, at a single tertiary care center were included. Variables regarding demographics, systemic and intracranial disease characteristics, symptoms, RT, palliative care, and death were recorded. Thirty-day mortality was defined as death within 30 days of RT completion. The Kaplan-Meier method was used to estimate median overall survival. Univariate and multivariable logistic regression models were used to assess associations between demographic, tumor, and treatment factors and 30-DM. Results: A total of 636 patients with brain metastases were treated with either WBRT (n = 117) or SRS (n = 519). The most common primary disease types were non-small cell lung (46.7%) and breast (19.8%) cancer. Median survival time was 6 months (95% CI, 5-7 months). Of the 636 patients, 75 (11.7%) died within 30 days of RT. On multivariable analysis, progressive intrathoracic disease (hazard ratio [HR], 4.67; 95% CI, 2.06-10.60; P = .002), progressive liver and/or adrenal metastases (HR, 2.20; 95% CI, 1.16-3.68; P = .02), and inpatient status (HR, 4.51; 95% CI, 1.78-11.42; P = .002) were associated with dying within 30 days of RT. A higher Karnofsky Performance Status (KPS) score (HR, 0.95; 95% CI, 0.93-0.97; P < .001), synchronous brain metastases at time of initial diagnosis (HR, 0.45; 95% CI, 0.21-0.96; P = .04), and outpatient palliative care utilization (HR, 0.45; 95% CI, 0.20-1.00; P = .05) were associated with surviving more than 30 days after RT. Conclusions: Multiple factors including a lower KPS, progressive intrathoracic disease, progressive liver and/or adrenal metastases, and inpatient status were associated with 30-DM after RT. A higher KPS, brain metastases at initial diagnosis, and outpatient palliative care utilization were associated with survival beyond 30 days. These data may aid in identifying which patients may benefit from brain metastasis-directed RT.

18.
Cancers (Basel) ; 15(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37173897

RESUMEN

Radiation necrosis, also known as treatment-induced necrosis, has emerged as an important adverse effect following stereotactic radiotherapy (SRS) for brain metastases. The improved survival of patients with brain metastases and increased use of combined systemic therapy and SRS have contributed to a growing incidence of necrosis. The cyclic GMP-AMP (cGAMP) synthase (cGAS) and stimulator of interferon genes (STING) pathway (cGAS-STING) represents a key biological mechanism linking radiation-induced DNA damage to pro-inflammatory effects and innate immunity. By recognizing cytosolic double-stranded DNA, cGAS induces a signaling cascade that results in the upregulation of type 1 interferons and dendritic cell activation. This pathway could play a key role in the pathogenesis of necrosis and provides attractive targets for therapeutic development. Immunotherapy and other novel systemic agents may potentiate activation of cGAS-STING signaling following radiotherapy and increase necrosis risk. Advancements in dosimetric strategies, novel imaging modalities, artificial intelligence, and circulating biomarkers could improve the management of necrosis. This review provides new insights into the pathophysiology of necrosis and synthesizes our current understanding regarding the diagnosis, risk factors, and management options of necrosis while highlighting novel avenues for discovery.

19.
Acta Neuropathol Commun ; 11(1): 50, 2023 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966348

RESUMEN

Gangliogliomas are brain tumors composed of neuron-like and macroglia-like components that occur in children and young adults. Gangliogliomas are often characterized by a rare population of immature astrocyte-appearing cells expressing CD34, a marker expressed in the neuroectoderm (neural precursor cells) during embryogenesis. New insights are needed to refine tumor classification and to identify therapeutic approaches. We evaluated five gangliogliomas with single nucleus RNA-seq, cellular indexing of transcriptomes and epitopes by sequencing, and/or spatially-resolved RNA-seq. We uncovered a population of CD34+ neoplastic cells with mixed neuroectodermal, immature astrocyte, and neuronal markers. Gene regulatory network interrogation in these neuroectoderm-like cells revealed control of transcriptional programming by TCF7L2/MEIS1-PAX6 and SOX2, similar to that found during neuroectodermal/neural development. Developmental trajectory analyses place neuroectoderm-like tumor cells as precursor cells that give rise to neuron-like and macroglia-like neoplastic cells. Spatially-resolved transcriptomics revealed a neuroectoderm-like tumor cell niche with relative lack of vascular and immune cells. We used these high resolution results to deconvolute clinically-annotated transcriptomic data, confirming that CD34+ cell-associated gene programs associate with gangliogliomas compared to other glial brain tumors. Together, these deep transcriptomic approaches characterized a ganglioglioma cellular hierarchy-confirming CD34+ neuroectoderm-like tumor precursor cells, controlling transcription programs, cell signaling, and associated immune cell states. These findings may guide tumor classification, diagnosis, prognostication, and therapeutic investigations.


Asunto(s)
Neoplasias Encefálicas , Ganglioglioma , Células-Madre Neurales , Niño , Humanos , Ganglioglioma/patología , Transcriptoma , Placa Neural/patología , Células-Madre Neurales/patología , Neoplasias Encefálicas/patología
20.
Adv Radiat Oncol ; 8(2): 101166, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845614

RESUMEN

Purpose: Hypofractionated stereotactic radiosurgery (HF-SRS) with or without surgical resection is potentially a preferred treatment for larger or symptomatic brain metastases (BMs). Herein, we report clinical outcomes and predictive factors following HF-SRS. Methods and Materials: Patients undergoing HF-SRS for intact (iHF-SRS) or resected (rHF-SRS) BMs from 2008 to 2018 were retrospectively identified. Linear accelerator-based image-guided HF-SRS consisted of 5 fractions at 5, 5.5, or 6 Gy per fraction. Time to local progression (LP), time to distant brain progression (DBP), and overall survival (OS) were calculated. Cox models assessed effect of clinical factors on OS. Fine and Gray's cumulative incidence model for competing events examined effect of factors on LP and DBP. The occurrence of leptomeningeal disease (LMD) was determined. Logistic regression examined predictors of LMD. Results: Among 445 patients, median age was 63.5 years; 87% had Karnofsky performance status ≥70. Fifty-three % of patients underwent surgical resection, and 75% received 5 Gy per fraction. Patients with resected BMs had higher Karnofsky performance status (90-100, 41 vs 30%), less extracranial disease (absent, 25 vs 13%), and fewer BMs (multiple, 32 vs 67%). Median diameter of the dominant BM was 3.0 cm (interquartile range, 1.8-3.6 cm) for intact BMs and 4.6 cm (interquartile range, 3.9-5.5 cm) for resected BMs. Median OS was 5.1 months (95% confidence interval [CI], 4.3-6.0) following iHF-SRS and 12.8 months (95% CI, 10.8-16.2) following rHF-SRS (P < .01). Cumulative LP incidence was 14.5% at 18 months (95% CI, 11.4-18.0%), significantly associated with greater total GTV (hazard ratio, 1.12; 95% CI, 1.05-1.20) following iFR-SRS, and with recurrent versus newly diagnosed BMs across all patients (hazard ratio, 2.28; 95% CI, 1.01-5.15). Cumulative DBP incidence was significantly greater following rHF-SRS than iHF-SRS (P = .01), with respective 24-month rates of 50.0 (95% CI, 43.3-56.3) and 35.7% (95% CI, 29.2-42.2). LMD (57 events total; 33% nodular, 67% diffuse) was observed in 17.1% of rHF-SRS and 8.1% of iHF-SRS cases (odds ratio, 2.46; 95% CI, 1.34-4.53). Any radionecrosis and grade 2+ radionecrosis events were observed in 14 and 8% of cases, respectively. Conclusions: HF-SRS demonstrated favorable rates of LC and radionecrosis in postoperative and intact settings. Corresponding LMD and RN rates were comparable to those of other studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...