Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Chem Biol ; 19(7): 1604-1615, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38980123

RESUMEN

Targeted protein degradation (TPD) is a therapeutic approach that leverages the cell's natural machinery to degrade targets instead of inhibiting them. This is accomplished by using mono- or bifunctional small molecules designed to induce the proximity of target proteins and E3 ubiquitin ligases, leading to ubiquitination and subsequent proteasome-dependent degradation of the target. One of the most significant attributes of the TPD approach is its proposed catalytic mechanism of action, which permits substoichiometric exposure to achieve the desired pharmacological effects. However, apart from one in vitro study, studies supporting the catalytic mechanism of degraders are largely inferred based on potency. A more comprehensive understanding of the degrader catalytic mechanism of action can help aspects of compound development. To address this knowledge gap, we developed a workflow for the quantitative measurement of the catalytic rate of degraders in cells. Comparing a selective and promiscuous BTK degrader, we demonstrate that both compounds function as efficient catalysts of BTK degradation, with the promiscuous degrader exhibiting faster rates due to its ability to induce more favorable ternary complexes. By leveraging computational modeling, we show that the catalytic rate is highly dynamic as the target is depleted from cells. Further investigation of the promiscuous kinase degrader revealed that the catalytic rate is a better predictor of optimal degrader activity toward a specific target compared to degradation magnitude alone. In summary, we present a versatile method for mapping the catalytic activity of any degrader for TPD in cells.


Asunto(s)
Proteolisis , Humanos , Agammaglobulinemia Tirosina Quinasa/metabolismo , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Complejo de la Endopetidasa Proteasomal/metabolismo
2.
PLoS Pathog ; 19(6): e1011185, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37289831

RESUMEN

Innate immune responses are crucial for limiting virus infection. However, viruses often hijack our best defenses for viral objectives. Human Cytomegalovirus (HCMV) is a beta herpesvirus which establishes a life-long latent infection. Defining the virus-host interactions controlling latency and reactivation is vital to the control of viral disease risk posed by virus reactivation. We defined an interaction between UL138, a pro-latency HCMV gene, and the host deubiquitinating complex, UAF1-USP1. UAF1 is a scaffold protein pivotal for the activity of ubiquitin specific peptidases (USP), including USP1. UAF1-USP1 sustains an innate immune response through the phosphorylation and activation of signal transducer and activator of transcription-1 (pSTAT1), as well as regulates the DNA damage response. After the onset of viral DNA synthesis, pSTAT1 levels are elevated in infection and this depends upon UL138 and USP1. pSTAT1 localizes to viral centers of replication, binds to the viral genome, and influences UL138 expression. Inhibition of USP1 results in a failure to establish latency, marked by increased viral genome replication and production of viral progeny. Inhibition of Jak-STAT signaling also results in increased viral genome synthesis in hematopoietic cells, consistent with a role for USP1-mediated regulation of STAT1 signaling in the establishment of latency. These findings demonstrate the importance of the UL138-UAF1-USP1 virus-host interaction in regulating HCMV latency establishment through the control of innate immune signaling. It will be important going forward to distinguish roles of UAF1-USP1 in regulating pSTAT1 relative to its role in the DNA damage response in HCMV infection.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , Humanos , Citomegalovirus/genética , Infecciones por Citomegalovirus/genética , Replicación Viral/genética , Proteasas Ubiquitina-Específicas/genética , Transducción de Señal , Latencia del Virus/genética , Factor de Transcripción STAT1/genética
3.
Elife ; 122023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37326306

RESUMEN

Communication between distant cells can be mediated by extracellular vesicles (EVs) that deliver proteins and RNAs to recipient cells. Little is known about how EVs are targeted to specific cell types. Here, we identify the Drosophila cell-surface protein Stranded at second (Sas) as a targeting ligand for EVs. Full-length Sas is present in EV preparations from transfected Drosophila Schneider 2 (S2) cells. Sas is a binding partner for the Ptp10D receptor tyrosine phosphatase, and Sas-bearing EVs preferentially target to cells expressing Ptp10D. We used co-immunoprecipitation and peptide binding to show that the cytoplasmic domain (ICD) of Sas binds to dArc1 and mammalian Arc. dArc1 and Arc are related to retrotransposon Gag proteins. They form virus-like capsids which encapsulate Arc and other mRNAs and are transported between cells via EVs. The Sas ICD contains a motif required for dArc1 binding that is shared by the mammalian and Drosophila amyloid precursor protein (APP) orthologs, and the APP ICD also binds to mammalian Arc. Sas facilitates delivery of dArc1 capsids bearing dArc1 mRNA into distant Ptp10D-expressing recipient cells in vivo.


Asunto(s)
Proteínas de Drosophila , Vesículas Extracelulares , Animales , Ligandos , Vesículas Extracelulares/metabolismo , Drosophila/genética , Proteínas de la Membrana/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , ARN Mensajero/metabolismo , Mamíferos/genética
4.
bioRxiv ; 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36798153

RESUMEN

Innate immune responses are crucial for limiting virus infection. However, viruses often hijack our best defenses for viral objectives. Human Cytomegalovirus (HCMV) is a beta herpesvirus which establishes a life-long latent infection. Defining the virus-host interactions controlling latency and reactivation is vital to the control of viral disease risk posed by virus reactivation. We defined an interaction between UL138, a pro-latency HCMV gene, and the host deubiquintase complex, UAF1-USP1. UAF1 is a scaffold protein pivotal for the activity of ubiquitin specific peptidases (USP), including USP1. UAF1-USP1 sustains an innate immune response through the phosphorylation and activation of signal transducer and activator of transcription-1 (pSTAT1), as well as regulates the DNA damage response. After the onset of viral DNA synthesis, pSTAT1 levels are elevated and this depends upon UL138 and USP1. pSTAT1 localizes to viral centers of replication, binds to the viral genome, and influences UL138 expression. Inhibition of USP1 results in a failure to establish latency, marked by increased viral genome replication and production of viral progeny. Inhibition of Jak-STAT signaling also results in increased viral genome synthesis in hematopoietic cells, consistent with a role for USP1-mediated regulation of STAT1 signaling in the establishment of latency. These findings demonstrate the importance of the UL138-UAF1-USP1 virus-host interaction in regulating HCMV latency establishment through the control of innate immune signaling. It will be important going forward to distinguish roles of UAF1-USP1 in regulating pSTAT1 relative to its role in the DNA damage response in HCMV infection. Importance: Human cytomegalovirus (HCMV) is one of nine herpesviruses that infect humans. Following a primary infection, HCMV establishes a life-long latent infection that is marked by sporadic, and likely frequent reactivation events. While these reactivation events are asymptomatic in the immune competent host, they pose important disease risks for the immune compromised, including solid organ or stem cell transplant recipients. Its complex interactions with host biology and deep coding capacity make it an excellent model for defining mechanisms important for viral latency and reactivation. Here we define an interaction with host proteins that commandeer typically antiviral innate immune signaling for the establishment of latency.

5.
ACS Chem Biol ; 18(2): 331-339, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36656921

RESUMEN

Molecular glues (MGs) are monovalent small molecules that induce an interaction between proteins (native or non-native partners) by altering the protein-protein interaction (PPI) interface toward a higher-affinity state. Enhancing the PPI between a protein and E3 ubiquitin ligase can lead to degradation of the partnering protein. Over the past decade, retrospective studies of clinical drugs identified that immunomodulatory drugs (e.g., thalidomide and analogues) and indisulam exhibit a molecular glue effect by driving the interaction between non-native substrates to CRBN and DCAF15 ligases, respectively. Ensuing reports of phenotypic screens focused on MG discovery have suggested that these molecules may be more common than initially anticipated. However, prospective discovery of MGs remains challenging. Thus, expanding the repertoire of MGs will enhance our understanding of principles for prospective design. Herein, we report the results of a CRISPR/Cas9 knockout screen of over 1000 ligases and ubiquitin proteasome system components in a BRD4 degradation assay with a JQ1-based monovalent degrader, compound 1a. We identified DCAF16, a substrate recognition component of the Cul4 ligase complex, as essential for compound activity, and we demonstrate that compound 1a drives the interaction between DCAF16 and BRD2/4 to promote target degradation. Taken together, our data suggest that compound 1a functions as an MG degrader between BRD2/4 and DCAF16 and provides a foundation for further mechanistic dissection to advance prospective MG discovery.


Asunto(s)
Proteínas Nucleares , Factores de Transcripción , Proteolisis , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estudios Retrospectivos , Factores de Transcripción/metabolismo , Unión Proteica , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
6.
J Proteomics ; 241: 104197, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33848640

RESUMEN

Proteasome inhibitors are an important class of chemotherapeutic drugs. In this study, we performed a large-scale ubiquitylome analysis of the three proteasome inhibitors MG132, bortezomib and carfilzomib. Although carfilzomib is currently being used for the treatment of multiple myeloma, it has not yet been subjected to a global ubiquitylome analysis. In this study, we identified more than 14,000 unique sites of ubiquitylation in more than 4400 protein groups. We introduced stringent criteria to determine the correct ubiquitylation site ratios and used five biological replicates to achieve increased statistical power. With the vast amount of data acquired, we made proteome-wide comparisons between the proteasome inhibitors and indicate candidate proteins that will benefit from further study. We find that in addition to the expected increase in ubiquitylation in the majority of proteins, unexpectedly a select few are specifically and significantly decreased in ubiquitylation at specific sites after treatment with proteasome inhibitors. We chose to follow-up on Mortality factor 4-like 1 (MORF4L1), which was significantly decreased in ubiquitylation at lysine 187 and lysine 104 upon proteasome inhibition, but increased in protein abundance by approximately two-fold. We demonstrate that the endogenous protein level of MORF4L1 is highly regulated by the ubiquitin proteasome system. SIGNIFICANCE: This study provides a highly curated dataset of more than 14,000 unique sites of ubiquitylation in more than 4400 protein groups. For the proper quantification of ubiquitylation sites, we introduced a higher standard by quantifying only those ubiquitylation sites that are not flanked by neighboring ubiquitylation, thereby avoiding the report of incorrect ratios. The sites identified will serve to identify important targets of the ubiquitin proteasome system and aid to better understand the repertoire of proteins that are affected by inhibiting the proteasome with MG132, bortezomib, and carfilzomib. In addition, we investigated the unusual observation that ubiquitylation of the tumor suppressor Mortality factor 4-like (MORF4L1) protein decreases rather than increases upon proteasome inhibition, which may contribute to an additional anti-tumor effect of bortezomib and carfilzomib.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Antineoplásicos/farmacología , Bortezomib/farmacología , Bortezomib/uso terapéutico , Humanos , Leupeptinas , Mieloma Múltiple/tratamiento farmacológico , Oligopéptidos , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Proteómica , Ubiquitinación
7.
Mol Cell ; 77(5): 1092-1106.e9, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31973889

RESUMEN

Co-opting Cullin4 RING ubiquitin ligases (CRL4s) to inducibly degrade pathogenic proteins is emerging as a promising therapeutic strategy. Despite intense efforts to rationally design degrader molecules that co-opt CRL4s, much about the organization and regulation of these ligases remains elusive. Here, we establish protein interaction kinetics and estimation of stoichiometries (PIKES) analysis, a systematic proteomic profiling platform that integrates cellular engineering, affinity purification, chemical stabilization, and quantitative mass spectrometry to investigate the dynamics of interchangeable multiprotein complexes. Using PIKES, we show that ligase assemblies of Cullin4 with individual substrate receptors differ in abundance by up to 200-fold and that Cand1/2 act as substrate receptor exchange factors. Furthermore, degrader molecules can induce the assembly of their cognate CRL4, and higher expression of the associated substrate receptor enhances degrader potency. Beyond the CRL4 network, we show how PIKES can reveal systems level biochemistry for cellular protein networks important to drug development.


Asunto(s)
Cromatografía Líquida de Alta Presión , Proteómica/métodos , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Células HEK293 , Humanos , Cinética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteína NEDD8/genética , Proteína NEDD8/metabolismo , Mapas de Interacción de Proteínas , Proteolisis , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética
8.
Nature ; 557(7705): 446-451, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29632312

RESUMEN

Ribosomal surveillance pathways scan for ribosomes that are transiently paused or terminally stalled owing to structural elements in mRNAs or nascent chain sequences1, 2. Some stalls in budding yeast are sensed by the GTPase Hbs1, which loads Dom34, a catalytically inactive member of the archaeo-eukaryotic release factor 1 superfamily. Hbs1-Dom34 and the ATPase Rli1 dissociate stalled ribosomes into 40S and 60S subunits. However, the 60S subunits retain the peptidyl-tRNA nascent chains, which recruit the ribosome quality control complex that consists of Rqc1-Rqc2-Ltn1-Cdc48-Ufd1-Npl4. Nascent chains ubiquitylated by the E3 ubiquitin ligase Ltn1 are extracted from the 60S subunit by the ATPase Cdc48-Ufd1-Npl4 and presented to the 26S proteasome for degradation3-9. Failure to degrade the nascent chains leads to protein aggregation and proteotoxic stress in yeast and neurodegeneration in mice10-14. Despite intensive investigations on the ribosome quality control pathway, it is not known how the tRNA is hydrolysed from the ubiquitylated nascent chain before its degradation. Here we show that the Cdc48 adaptor Vms1 is a peptidyl-tRNA hydrolase. Similar to classical eukaryotic release factor 1, Vms1 activity is dependent on a conserved catalytic glutamine. Evolutionary analysis indicates that yeast Vms1 is the founding member of a clade of eukaryotic release factor 1 homologues that we designate the Vms1-like release factor 1 clade.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Proteínas Portadoras/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Biocatálisis , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Dominio Catalítico/genética , Glutamina/genética , Glutamina/metabolismo , Humanos , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Mutación Puntual , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteína Estafilocócica A/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteína que Contiene Valosina/metabolismo , Proteínas de Transporte Vesicular/metabolismo
9.
Mol Cell ; 69(5): 773-786.e6, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29499133

RESUMEN

Skp1⋅Cul1⋅F-box (SCF) ubiquitin ligase assembly is regulated by the interplay of substrate binding, reversible Nedd8 conjugation on Cul1, and the F-box protein (FBP) exchange factors Cand1 and Cand2. Detailed investigations into SCF assembly and function in reconstituted systems and Cand1/2 knockout cells informed the development of a mathematical model for how dynamical assembly of SCF complexes is controlled and how this cycle is coupled to degradation of an SCF substrate. Simulations predicted an unanticipated hypersensitivity of Cand1/2-deficient cells to FBP expression levels, which was experimentally validated. Together, these and prior observations lead us to propose the adaptive exchange hypothesis, which posits that regulation of the koff of an FBP from SCF by the actions of substrate, Nedd8, and Cand1 molds the cellular repertoire of SCF complexes and that the plasticity afforded by this exchange mechanism may enable large variations in FBP expression during development and in FBP gene number during evolution.


Asunto(s)
Proteínas F-Box , Regulación de la Expresión Génica , Modelos Biológicos , Modelos Químicos , Proteolisis , Factores de Transcripción , Animales , Proteínas Cullin/química , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Proteínas F-Box/biosíntesis , Proteínas F-Box/química , Proteínas F-Box/genética , Ratones , Proteína NEDD8/química , Proteína NEDD8/genética , Proteína NEDD8/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Cell ; 171(6): 1326-1339.e14, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29103612

RESUMEN

SCF (Skp1-Cullin-F-box) ubiquitin ligases comprise several dozen modular enzymes that have diverse roles in biological regulation. SCF enzymes share a common catalytic core containing Cul1⋅Rbx1, which is directed toward different substrates by a variable substrate receptor (SR) module comprising 1 of 69 F-box proteins bound to Skp1. Despite the broad cellular impact of SCF enzymes, important questions remain about the architecture and regulation of the SCF repertoire, including whether SRs compete for Cul1 and, if so, how this competition is managed. Here, we devise methods that preserve the in vivo assemblages of SCF complexes and apply quantitative mass spectrometry to perform a census of these complexes (the "SCFome") in various states. We show that Nedd8 conjugation and the SR exchange factor Cand1 have a profound effect on shaping the SCFome. Together, these factors enable rapid remodeling of SCF complexes to promote biased assembly of SR modules bound to substrate.


Asunto(s)
Proteínas Ligasas SKP Cullina F-box/química , Proteínas Portadoras/metabolismo , Línea Celular , Cromatografía de Afinidad , Proteínas Cullin/metabolismo , Humanos , Espectrometría de Masas , Proteína NEDD8/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo
11.
Elife ; 52016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27552055

RESUMEN

Overproduced yeast ribosomal protein (RP) Rpl26 fails to assemble into ribosomes and is degraded in the nucleus/nucleolus by a ubiquitin-proteasome system quality control pathway comprising the E2 enzymes Ubc4/Ubc5 and the ubiquitin ligase Tom1. tom1 cells show reduced ubiquitination of multiple RPs, exceptional accumulation of detergent-insoluble proteins including multiple RPs, and hypersensitivity to imbalances in production of RPs and rRNA, indicative of a profound perturbation to proteostasis. Tom1 directly ubiquitinates unassembled RPs primarily via residues that are concealed in mature ribosomes. Together, these data point to an important role for Tom1 in normal physiology and prompt us to refer to this pathway as ERISQ, for excess ribosomal protein quality control. A similar pathway, mediated by the Tom1 homolog Huwe1, restricts accumulation of overexpressed hRpl26 in human cells. We propose that ERISQ is a key element of the quality control machinery that sustains protein homeostasis and cellular fitness in eukaryotes.


Asunto(s)
Redes y Vías Metabólicas , Proteolisis , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Eliminación de Gen , Control de Calidad , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Supresoras de Tumor , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
12.
Mol Cell Proteomics ; 15(9): 2970-86, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27406709

RESUMEN

Protein quality control (PQC) plays an important role in stemming neurodegenerative diseases and is essential for the growth of some cancers. Valosin-containing protein (VCP)/p97 plays a pivotal role in multiple PQC pathways by interacting with numerous adaptors that link VCP to specific PQC pathways and substrates and influence the post-translational modification state of substrates. However, our poor understanding of the specificity and architecture of the adaptors, and the dynamic properties of their interactions with VCP hinders our understanding of fundamental features of PQC and how modulation of VCP activity can best be exploited therapeutically. In this study we use multiple mass spectrometry-based proteomic approaches combined with biophysical studies to characterize the interaction of adaptors with VCP. Our results reveal that most VCP-adaptor interactions are characterized by rapid dynamics that in some cases are modulated by the VCP inhibitor NMS873. These findings have significant implications for both the regulation of VCP function and the impact of VCP inhibition on different VCP-adaptor complexes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fibroblastos/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Células Cultivadas , Cromatografía en Gel , Células HEK293 , Humanos , Espectrometría de Masas , Unión Proteica , Mapas de Interacción de Proteínas , Especificidad por Sustrato , Proteína que Contiene Valosina
13.
Mol Biol Cell ; 27(17): 2642-52, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27385339

RESUMEN

Ribosome assembly is an essential process that consumes prodigious quantities of cellular resources. Ribosomal proteins cannot be overproduced in Saccharomyces cerevisiae because the excess proteins are rapidly degraded. However, the responsible quality control (QC) mechanisms remain poorly characterized. Here we demonstrate that overexpression of multiple proteins of the small and large yeast ribosomal subunits is suppressed. Rpl26 overexpressed from a plasmid can be detected in the nucleolus and nucleoplasm, but it largely fails to assemble into ribosomes and is rapidly degraded. However, if the endogenous RPL26 loci are deleted, plasmid-encoded Rpl26 assembles into ribosomes and localizes to the cytosol. Chemical and genetic perturbation studies indicate that overexpressed ribosomal proteins are degraded by the ubiquitin-proteasome system and not by autophagy. Inhibition of the proteasome led to accumulation of multiple endogenous ribosomal proteins in insoluble aggregates, consistent with the operation of this QC mechanism in the absence of ribosomal protein overexpression. Our studies reveal that ribosomal proteins that fail to assemble into ribosomes are rapidly distinguished from their assembled counterparts and ubiquitinated and degraded within the nuclear compartment.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Proteínas Ribosómicas/metabolismo , Autofagia , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , ARN Ribosómico/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Ubiquitinación/fisiología
14.
Elife ; 52016 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-27031283

RESUMEN

The COP9-Signalosome (CSN) regulates cullin-RING ubiquitin ligase (CRL) activity and assembly by cleaving Nedd8 from cullins. Free CSN is autoinhibited, and it remains unclear how it becomes activated. We combine structural and kinetic analyses to identify mechanisms that contribute to CSN activation and Nedd8 deconjugation. Both CSN and neddylated substrate undergo large conformational changes upon binding, with important roles played by the N-terminal domains of Csn2 and Csn4 and the RING domain of Rbx1 in enabling formation of a high affinity, fully active complex. The RING domain is crucial for deneddylation, and works in part through conformational changes involving insert-2 of Csn6. Nedd8 deconjugation and re-engagement of the active site zinc by the autoinhibitory Csn5 glutamate-104 diminish affinity for Cul1/Rbx1 by ~100-fold, resulting in its rapid ejection from the active site. Together, these mechanisms enable a dynamic deneddylation-disassembly cycle that promotes rapid remodeling of the cellular CRL network.


Asunto(s)
Proteínas Cullin/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejos Multienzimáticos/metabolismo , Péptido Hidrolasas/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Microscopía por Crioelectrón , Humanos , Hidrólisis , Péptidos y Proteínas de Señalización Intracelular/química , Cinética , Espectrometría de Masas , Modelos Moleculares , Complejos Multienzimáticos/química , Proteína NEDD8 , Péptido Hidrolasas/química , Unión Proteica , Conformación Proteica
15.
Mol Cell ; 61(6): 809-20, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26990986

RESUMEN

Cereblon (CRBN), a substrate receptor for the cullin-RING ubiquitin ligase 4 (CRL4) complex, is a direct protein target for thalidomide teratogenicity and antitumor activity of immunomodulatory drugs (IMiDs). Here we report that glutamine synthetase (GS) is an endogenous substrate of CRL4(CRBN). Upon exposing cells to high glutamine concentration, GS is acetylated at lysines 11 and 14, yielding a degron that is necessary and sufficient for binding and ubiquitylation by CRL4(CRBN) and degradation by the proteasome. Binding of acetylated degron peptides to CRBN depends on an intact thalidomide-binding pocket but is not competitive with IMiDs. These findings reveal a feedback loop involving CRL4(CRBN) that adjusts GS protein levels in response to glutamine and uncover a new function for lysine acetylation.


Asunto(s)
Glutamato-Amoníaco Ligasa/metabolismo , Factores Inmunológicos/metabolismo , Péptido Hidrolasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Acetilación , Proteínas Adaptadoras Transductoras de Señales , Glutamina/metabolismo , Células HEK293 , Humanos , Lisina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Talidomida/metabolismo , Ubiquitinación
16.
J Virol ; 89(20): 10230-46, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26223645

RESUMEN

UNLABELLED: Human cytomegalovirus (HCMV) is a member of the betaherpesvirus family. During infection, an array of viral proteins manipulates the host cell cycle. We have previously shown that expression of HCMV pUL27 results in increased levels of the cyclin-dependent kinase (CDK) inhibitor p21(Cip1). In addition, pUL27 is necessary for the full antiviral activity of the pUL97 kinase inhibitor maribavir (MBV). The purpose of this study was to define the relationship between pUL27 and pUL97 and its role in MBV antiviral activity. We observed that expression of wild-type but not kinase-inactive pUL97 disrupted pUL27-dependent induction of p21(Cip1). Furthermore, pUL97 associated with and promoted the phosphorylation of pUL27. During infection, inhibition of the kinase resulted in elevated levels of p21(Cip1) in wild-type virus but not a pUL27-deficient virus. We manipulated the p21(Cip1) levels to evaluate the functional consequence to MBV. Overexpression of p21(Cip1) restored MBV activity against a pUL27-deficient virus, while disruption reduced activity against wild-type virus. We provide evidence that the functional target of p21(Cip1) in the context of MBV activity is CDK1. One CDK-like activity of pUL97 is to phosphorylate nuclear lamin A/C, resulting in altered nuclear morphology and increased viral egress. In the presence of MBV, we observed that infection using a pUL27-deficient virus still altered the nuclear morphology. This was prevented by the addition of a CDK inhibitor. Overall, our results demonstrate an antagonistic relationship between pUL27 and pUL97 activities centering on p21(Cip1) and support the idea that CDKs can complement some activities of pUL97. IMPORTANCE: HCMV infection results in severe disease upon immunosuppression and is a leading cause of congenital birth defects. Effective antiviral compounds exist, yet they exhibit high levels of toxicity, are not approved for use during pregnancy, and can result in antiviral resistance. Our studies have uncovered new information regarding the antiviral efficacy of the HCMV pUL97 kinase inhibitor MBV as it relates to the complex interplay between pUL97 and a second HCMV protein, pUL27. We demonstrate that pUL97 functions antagonistically against pUL27 by phosphorylation-dependent inactivation of pUL27-mediated induction of p21(Cip1). In contrast, we provide evidence that p21(Cip1) functions to antagonize overlapping activities between pUL97 and cellular CDKs. In addition, these studies further support the notion that CDK inhibitors or p21(Cip1) activators might be useful in combination with MBV to effectively inhibit HCMV infections.


Asunto(s)
Antivirales/farmacología , Bencimidazoles/farmacología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Citomegalovirus/efectos de los fármacos , Ribonucleósidos/farmacología , Proteínas Virales/genética , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/virología , Proteína Quinasa CDC2 , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/antagonistas & inhibidores , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Citomegalovirus/genética , Citomegalovirus/metabolismo , Farmacorresistencia Viral/efectos de los fármacos , Farmacorresistencia Viral/genética , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/virología , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoblastos/virología , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal , Proteínas Virales/metabolismo
17.
Antiviral Res ; 100(2): 321-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24070820

RESUMEN

Therapeutic strategies controlling human cytomegalovirus (hCMV) infection are limited due to adverse side effects and emergence of antiviral resistance variants. A compound being evaluated for treating hCMV disease is maribavir (MBV) which disrupts replication by inhibiting the viral kinase pUL97. Previous studies have demonstrated that the antiviral activity of MBV is sensitive to the proliferation state of the infected cell. In these studies, we were interested in determining whether inhibition of the pro-proliferative transcription factor, signal transducer and activator of transcription-3 (STAT3), could influence the antiviral activity of MBV. The addition of the STAT3 inhibitor, S3i-201, during infection altered hCMV-mediated changes in cell cycle protein expression. Upon combining S3i-201 with MBV, our data suggest that STAT3 inhibition is acting synergistically with MBV to inhibit infection in vitro. Furthermore, specific concentrations of S3i-201 and MBV induced caspase-dependent death of infected but not uninfected cell. Our studies suggest that treating infection with both S3i-201 and MBV is a novel approach to inhibit hCMV replication.


Asunto(s)
Antivirales/farmacología , Bencenosulfonatos/farmacología , Bencimidazoles/farmacología , Citomegalovirus/efectos de los fármacos , Ribonucleósidos/farmacología , Factor de Transcripción STAT3/antagonistas & inhibidores , Ácidos Aminosalicílicos/farmacología , Línea Celular , Citomegalovirus/fisiología , Sinergismo Farmacológico , Humanos , Replicación Viral/efectos de los fármacos
18.
J Virol ; 87(19): 10763-76, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23903834

RESUMEN

In the canonical STAT3 signaling pathway, binding of agonist to receptors activates Janus kinases that phosphorylate cytoplasmic STAT3 at tyrosine 705 (Y705). Phosphorylated STAT3 dimers accumulate in the nucleus and drive the expression of genes involved in inflammation, angiogenesis, invasion, and proliferation. Here, we demonstrate that human cytomegalovirus (HCMV) infection rapidly promotes nuclear localization of STAT3 in the absence of robust phosphorylation at Y705. Furthermore, infection disrupts interleukin-6 (IL-6)-induced phosphorylation of STAT3 and expression of a subset of IL-6-induced STAT3-regulated genes, including SOCS3. We show that the HCMV 72-kDa immediate-early 1 (IE1) protein associates with STAT3 and is necessary to localize STAT3 to the nucleus during infection. Furthermore, expression of IE1 is sufficient to disrupt IL-6-induced phosphorylation of STAT3, binding of STAT3 to the SOCS3 promoter, and SOCS3 gene expression. Finally, inhibition of STAT3 nuclear localization or STAT3 expression during infection is linked to diminished HCMV genome replication. Viral gene expression is also disrupted, with the greatest impact seen following viral DNA synthesis. Our study identifies IE1 as a new regulator of STAT3 intracellular localization and IL-6 signaling and points to an unanticipated role of STAT3 in HCMV infection.


Asunto(s)
Núcleo Celular/metabolismo , Infecciones por Citomegalovirus/virología , Citomegalovirus/fisiología , Proteínas Inmediatas-Precoces/metabolismo , Interleucina-6/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Astrocitoma/metabolismo , Astrocitoma/patología , Astrocitoma/virología , Western Blotting , Núcleo Celular/genética , Células Cultivadas , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/virología , Técnica del Anticuerpo Fluorescente , Humanos , Proteínas Inmediatas-Precoces/genética , Interleucina-6/genética , Ratones , Fosforilación , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción STAT3/genética , Transducción de Señal , Transactivadores , Replicación Viral
19.
J Virol ; 87(13): 7393-408, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23616659

RESUMEN

Human cytomegalovirus (HCMV) is a common agent of congenital infection and causes severe disease in immunocompromised patients. Current approved therapies focus on inhibiting viral DNA replication. The HCMV kinase pUL97 contributes to multiple stages of viral infection including DNA replication, controlling the cell cycle, and virion maturation. Our studies demonstrate that pUL97 also functions by influencing immediate early (IE) gene expression during the initial stages of infection. Inhibition of kinase activity using the antiviral compound maribavir or deletion of the UL97 gene resulted in decreased expression of viral immediate early genes during infection. Expression of pUL97 was sufficient to transactivate IE1 gene expression from the viral genome, which was dependent on viral kinase activity. We observed that pUL97 associates with histone deacetylase 1 (HDAC1). HDAC1 is a transcriptional corepressor that acts to silence expression of viral genes. We observed that inhibition or deletion of pUL97 kinase resulted in increased HDAC1 and decreased histone H3 lysine 9 acetylation associating with the viral major immediate early (MIE) promoter. IE expression during pUL97 inhibition or deletion was rescued following inhibition of deacetylase activity. HDAC1 associates with chromatin by protein-protein interactions. Expression of active but not inactive pUL97 kinase decreased HDAC1 interaction with the transcriptional repressor protein DAXX. Finally, using mass spectrometry, we found that HDAC1 is uniquely phosphorylated upon expression of pUL97. Our results support the conclusion that HCMV pUL97 kinase regulates viral immediate early gene expression by phosphorylation-mediated disruption of HDAC1 binding to the MIE promoter.


Asunto(s)
Citomegalovirus/enzimología , Regulación Viral de la Expresión Génica/fisiología , Histona Desacetilasa 1/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Bencimidazoles , Western Blotting , Inmunoprecipitación de Cromatina , Proteínas Co-Represoras , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente , Eliminación de Gen , Regulación Viral de la Expresión Génica/genética , Humanos , Inmunoprecipitación , Espectrometría de Masas , Chaperonas Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/metabolismo , Fosforilación , Proteínas Quinasas/genética , Ribonucleósidos
20.
J Virol ; 87(5): 2463-74, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23236067

RESUMEN

During infection by human cytomegalovirus (HCMV), the tumor suppressor protein p53, which promotes efficient viral gene expression, is stabilized. However, the expression of numerous p53-responsive cellular genes is not upregulated. The molecular mechanism used to manipulate the transcriptional activity of p53 during infection remains unclear. The HCMV proteins IE1, IE2, pUL44, and pUL84 likely contribute to the regulation of p53. In this study, we used a discovery-based approach to identify the protein targets of the HCMV protein pUL29/28 during infection. Previous studies have demonstrated that pUL29/28 regulates viral gene expression by interacting with the chromatin remodeling complex NuRD. Here, we observed that pUL29/28 also associates with p53, an additional deacetylase complex, and several HCMV proteins, including pUL38. We confirmed the interaction between p53 and pUL29/28 in both the presence and absence of infection. HCMV pUL29/28 with pUL38 altered the activity of the 53-regulatable p21CIP1 promoter. During infection, pUL29/28 and pUL38 contributed to the inhibition of p21CIP1 as well as caspase 1 expression. The expression of several other p53-regulating genes was not altered. Infection using a UL29-deficient virus resulted in increased p53 binding and histone H3 acetylation at the responsive promoters. Furthermore, expression of pUL29/28 and its interacting partner pUL38 contributed to an increase in the steady-state protein levels of p53. This study identified two additional HCMV proteins, pUL29/28 and pUL38, which participate in the complex regulation of p53 transcriptional activity during infection.


Asunto(s)
Caspasa 1/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/virología , Citomegalovirus/fisiología , Regiones Promotoras Genéticas , Proteína p53 Supresora de Tumor/metabolismo , Acetilación , Proteínas de la Cápside/metabolismo , Caspasa 1/biosíntesis , Ciclo Celular , Línea Celular , Citomegalovirus/genética , Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/metabolismo , Proteínas de Unión al ADN/metabolismo , Fibroblastos , Regulación de la Expresión Génica , Células HEK293 , Histonas/metabolismo , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Activación Transcripcional , Proteína p53 Supresora de Tumor/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA