Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (191)2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36688542

RESUMEN

During membrane protein structural elucidation and biophysical characterization, it is common to trial numerous protein constructs containing different tags, truncations, deletions, fusion partner insertions, and stabilizing mutations to find one that is not aggregated after extraction from the membrane. Furthermore, buffer screening to determine the detergent, additive, ligand, or polymer that provides the most stabilizing condition for the membrane protein is an important practice. The early characterization of membrane protein quality by fluorescent size exclusion chromatography provides a powerful tool to assess and rank different constructs or conditions without the requirement for protein purification, and this tool also minimizes the sample requirement. The membrane proteins must be fluorescently tagged, commonly by expressing them with a GFP tag or similar. The protein can be solubilized directly from whole cells and then crudely clarified by centrifugation; subsequently, the protein is passed down a size exclusion column, and a fluorescent trace is collected. Here, a method for running FSEC and representative FSEC data on the GPCR targets sphingosine-1-phosphate receptor (S1PR1) and serotonin receptor (5HT2AR) are presented.


Asunto(s)
Colorantes , Proteínas de la Membrana , Proteínas de la Membrana/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Cromatografía en Gel
2.
Proc Natl Acad Sci U S A ; 116(27): 13330-13339, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31213532

RESUMEN

Despite the crucial role of RAF kinases in cell signaling and disease, we still lack a complete understanding of their regulation. Heterodimerization of RAF kinases as well as dephosphorylation of a conserved "S259" inhibitory site are important steps for RAF activation but the precise mechanisms and dynamics remain unclear. A ternary complex comprised of SHOC2, MRAS, and PP1 (SHOC2 complex) functions as a RAF S259 holophosphatase and gain-of-function mutations in SHOC2, MRAS, and PP1 that promote complex formation are found in Noonan syndrome. Here we show that SHOC2 complex-mediated S259 RAF dephosphorylation is critically required for growth factor-induced RAF heterodimerization as well as for MEK dissociation from BRAF. We also uncover SHOC2-independent mechanisms of RAF and ERK pathway activation that rely on N-region phosphorylation of CRAF. In DLD-1 cells stimulated with EGF, SHOC2 function is essential for a rapid transient phase of ERK activation, but is not required for a slow, sustained phase that is instead driven by palmitoylated H/N-RAS proteins and CRAF. Whereas redundant SHOC2-dependent and -independent mechanisms of RAF and ERK activation make SHOC2 dispensable for proliferation in 2D, KRAS mutant cells preferentially rely on SHOC2 for ERK signaling under anchorage-independent conditions. Our study highlights a context-dependent contribution of SHOC2 to ERK pathway dynamics that is preferentially engaged by KRAS oncogenic signaling and provides a biochemical framework for selective ERK pathway inhibition by targeting the SHOC2 holophosphatase.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Quinasas raf/química , Quinasas raf/metabolismo , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Línea Celular Tumoral , Edición Génica , Técnicas de Inactivación de Genes , Humanos , Fosforilación , Multimerización de Proteína , Proteínas ras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...