Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
JAMA Netw Open ; 7(4): e247822, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38652476

RESUMEN

Importance: A SARS-CoV-2 vaccine was approved for adolescents aged 12 to 15 years on May 10, 2021, with approval for younger age groups following thereafter. The population level impact of the pediatric COVID-19 vaccination program has not yet been established. Objective: To identify whether California's pediatric COVID-19 immunization program was associated with changes in pediatric COVID-19 incidence and hospitalizations. Design, Setting, and Participants: A case series on COVID-19 vaccination including children aged 6 months to 15 years was conducted in California. Data were obtained on COVID-19 cases in California between April 1, 2020, and February 27, 2023. Exposure: Postvaccination evaluation periods spanned 141 days (June 10 to October 29, 2021) for adolescents aged 12 to 15 years, 199 days (November 29, 2021, to June 17, 2022) for children aged 5 to 11 years, and 225 days (July 17, 2022, to February 27, 2023) for those aged 6 to 59 months. During these periods, statewide vaccine coverage reached 53.5% among adolescents aged 12 to 15 years, 34.8% among children aged 5 to 11 years, and 7.9% among those aged 6 to 59 months. Main Outcomes and Measures: Age-stepped implementation of COVID-19 vaccination was used to compare observed county-level incidence and hospitalization rates during periods when each age group became vaccine eligible to counterfactual rates predicted from observations among other age groups. COVID-19 case and hospitalization data were obtained from the California reportable disease surveillance system. Results: Between April 1, 2020, and February 27, 2023, a total of 3 913 063 pediatric COVID-19 cases and 12 740 hospitalizations were reported in California. Reductions of 146 210 cases (95% prediction interval [PI], 136 056-158 948) were estimated among adolescents aged 12 to 15 years, corresponding to a 37.1% (35.5%-39.1%) reduction from counterfactual predictions. Reductions of 230 134 (200 170-265 149) cases were estimated among children aged 5 to 11 years, corresponding to a 23.7% (20.6%-27.3%) reduction from counterfactual predictions. No evidence of reductions in COVID-19 cases statewide were found among children aged 6 to 59 months (estimated averted cases, -259; 95% PI, -1938 to 1019), although low transmission during the evaluation period may have limited the ability to do so. An estimated 168 hospitalizations (95% PI, 42-324) were averted among children aged 6 to 59 months, corresponding to a 24.4% (95% PI, 6.1%-47.1%) reduction. In meta-analyses, county-level vaccination coverage was associated with averted cases for all age groups. Despite low vaccination coverage, pediatric COVID-19 immunization in California averted 376 085 (95% PI, 348 355-417 328) reported cases and 273 (95% PI, 77-605) hospitalizations among children aged 6 months to 15 years over approximately 4 to 7 months following vaccination availability. Conclusions and Relevance: The findings of this case series analysis of 3 913 063 cases suggest reduced pediatric SARS-CoV-2 transmission following immunization. These results support the use of COVID-19 vaccines to reduce COVID-19 incidence and hospitalization in pediatric populations.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Hospitalización , SARS-CoV-2 , Humanos , COVID-19/prevención & control , COVID-19/epidemiología , Niño , Adolescente , Hospitalización/estadística & datos numéricos , Incidencia , Preescolar , California/epidemiología , Vacunas contra la COVID-19/uso terapéutico , Lactante , Femenino , Masculino , Vacunación/estadística & datos numéricos , Programas de Inmunización
2.
Environ Epidemiol ; 7(4): e254, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37545805

RESUMEN

The frequency and severity of wildfires in the Western United States have increased over recent decades, motivating hypotheses that wildfires contribute to the incidence of coccidioidomycosis, an emerging fungal disease in the Western United States with sharp increases in incidence observed since 2000. While coccidioidomycosis outbreaks have occurred among wildland firefighters clearing brush, it remains unknown whether fires are associated with an increased incidence among the general population. Methods: We identified 19 wildfires occurring within California's highly endemic San Joaquin Valley between 2003 and 2015. Using geolocated surveillance records, we applied a synthetic control approach to estimate the effect of each wildfire on the incidence of coccidioidomycosis among residents that lived within a hexagonal buffer of 20 km radii surrounding the fire. Results: We did not detect excess cases due to wildfires in the 12 months (pooled estimated percent change in cases: 2.8%; 95% confidence interval [CI] = -29.0, 85.2), 13-24 months (7.9%; 95% CI = -27.3, 113.9), or 25-36 months (17.4%; 95% CI = -25.1, 157.1) following a wildfire. When examined individually, we detected significant increases in incidence following three of the 19 wildfires, all of which had relatively large adjacent populations, high transmission before the fire, and a burn area exceeding 5,000 acres. Discussion: We find limited evidence that wildfires drive increases in coccidioidomycosis incidence among the general population. Nevertheless, our results raise concerns that large fires in regions with ongoing local transmission of Coccidioides may be associated with increases in incidence, underscoring the need for field studies examining Coccidioides spp. in soils and air pre- and post-wildfires.

3.
Nature ; 619(7971): 782-787, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37438520

RESUMEN

Many communities in low- and middle-income countries globally lack sustainable, cost-effective and mutually beneficial solutions for infectious disease, food, water and poverty challenges, despite their inherent interdependence1-7. Here we provide support for the hypothesis that agricultural development and fertilizer use in West Africa increase the burden of the parasitic disease schistosomiasis by fuelling the growth of submerged aquatic vegetation that chokes out water access points and serves as habitat for freshwater snails that transmit Schistosoma parasites to more than 200 million people globally8-10. In a cluster randomized controlled trial (ClinicalTrials.gov: NCT03187366) in which we removed invasive submerged vegetation from water points at 8 of 16 villages (that is, clusters), control sites had 1.46 times higher intestinal Schistosoma infection rates in schoolchildren and lower open water access than removal sites. Vegetation removal did not have any detectable long-term adverse effects on local water quality or freshwater biodiversity. In feeding trials, the removed vegetation was as effective as traditional livestock feed but 41 to 179 times cheaper and converting the vegetation to compost provided private crop production and total (public health plus crop production benefits) benefit-to-cost ratios as high as 4.0 and 8.8, respectively. Thus, the approach yielded an economic incentive-with important public health co-benefits-to maintain cleared waterways and return nutrients captured in aquatic plants back to agriculture with promise of breaking poverty-disease traps. To facilitate targeting and scaling of the intervention, we lay the foundation for using remote sensing technology to detect snail habitats. By offering a rare, profitable, win-win approach to addressing food and water access, poverty alleviation, infectious disease control and environmental sustainability, we hope to inspire the interdisciplinary search for planetary health solutions11 to the many and formidable, co-dependent global grand challenges of the twenty-first century.


Asunto(s)
Agricultura , Ecosistema , Salud Rural , Esquistosomiasis , Caracoles , Animales , Niño , Humanos , Esquistosomiasis/epidemiología , Esquistosomiasis/prevención & control , Esquistosomiasis/transmisión , Caracoles/parasitología , África Occidental , Fertilizantes , Especies Introducidas , Intestinos/parasitología , Agua Dulce , Plantas/metabolismo , Biodiversidad , Alimentación Animal , Calidad del Agua , Producción de Cultivos/métodos , Salud Pública , Pobreza/prevención & control , Organismos Acuáticos/metabolismo , Tecnología de Sensores Remotos
4.
Bull Math Biol ; 85(4): 31, 2023 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-36907932

RESUMEN

Optimal control theory can be a useful tool to identify the best strategies for the management of infectious diseases. In most of the applications to disease control with ordinary differential equations, the objective functional to be optimized is formulated in monetary terms as the sum of intervention costs and the cost associated with the burden of disease. We present alternate formulations that express epidemiological outcomes via health metrics and reframe the problem to include features such as budget constraints and epidemiological targets. These alternate formulations are illustrated with a compartmental cholera model. The alternate formulations permit us to better explore the sensitivity of the optimal control solutions to changes in available budget or the desired epidemiological target. We also discuss some limitations of comprehensive cost assessment in epidemiology.


Asunto(s)
Infecciones , Humanos , Infecciones/terapia , Cólera/epidemiología , Cólera/prevención & control , Cólera/terapia , Países en Desarrollo , Resultado del Tratamiento
5.
Environ Pollut ; 319: 120952, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36586553

RESUMEN

Use of agrochemicals, including insecticides, is vital to food production and predicted to increase 2-5 fold by 2050. Previous studies have shown a positive association between agriculture and the human infectious disease schistosomiasis, which is problematic as this parasitic disease infects approximately 250 million people worldwide. Certain insecticides might runoff fields and be highly toxic to invertebrates, such as prawns in the genus Macrobrachium, that are biocontrol agents for snails that transmit the parasites causing schistosomiasis. We used a laboratory dose-response experiment and an observational field study to determine the relative toxicities of three pyrethroid (esfenvalerate, λ-cyhalothrin, and permethrin) and three organophosphate (chlorpyrifos, malathion, and terbufos) insecticides to Macrobrachium prawns. In the lab, pyrethroids were consistently several orders of magnitude more toxic than organophosphate insecticides, and more likely to runoff fields at lethal levels according to modeling data. At 31 water contact sites in the lower basin of the Senegal River where schistosomiasis is endemic, we found that Macrobrachium prawn survival was associated with pyrethroid but not organophosphate application rates to nearby crop fields after controlling for abiotic and prawn-level factors. Our laboratory and field results suggest that widely used pyrethroid insecticides can have strong non-target effects on Macrobrachium prawns that are biocontrol agents where 400 million people are at risk of human schistosomiasis. Understanding the ecotoxicology of high-risk insecticides may help improve human health in schistosomiasis-endemic regions undergoing agricultural expansion.


Asunto(s)
Cloropirifos , Insecticidas , Palaemonidae , Piretrinas , Esquistosomiasis , Animales , Humanos , Insecticidas/toxicidad , Piretrinas/toxicidad , Esquistosomiasis/epidemiología , Esquistosomiasis/parasitología , Permetrina , Palaemonidae/fisiología
6.
Biometrics ; 79(2): 1507-1519, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35191022

RESUMEN

Passive surveillance systems are widely used to monitor diseases occurrence over wide spatial areas due to their cost-effectiveness and integration into broadly distributed healthcare systems. However, such systems are generally associated with imperfect ascertainment of disease cases and with heterogeneous capture probabilities arising from factors such as differential access to care. Augmenting passive surveillance systems with other surveillance efforts provides a way to estimate the true number of incident cases. We develop a hierarchical modeling framework for analyzing data from multiple surveillance systems that allows for individual-level covariate-dependent heterogeneous capture probabilities, and borrows information across surveillance sites to improve estimation of the true number of incident cases. Inference is carried out via a two-stage Bayesian procedure. Simulation studies illustrated superior performance of the proposed approach with respect to bias, root mean square error, and coverage compared to a model that does not borrow information across sites. We applied the proposed model to data from three surveillance systems reporting pulmonary tuberculosis (PTB) cases in a major center of ongoing transmission in China. The analysis yielded bias-corrected estimates of PTB cases from the passive system and led to the identification of risk factors associated with PTB rates, as well as factors influencing the operating characteristics of the implemented surveillance systems.


Asunto(s)
Vigilancia en Salud Pública , Humanos , Simulación por Computador , Teorema de Bayes , Análisis de Datos , Tuberculosis Pulmonar/epidemiología , Factores de Riesgo
7.
Lancet Planet Health ; 6(10): e793-e803, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36208642

RESUMEN

BACKGROUND: Drought is an understudied driver of infectious disease dynamics. Amidst the ongoing southwestern North American megadrought, California (USA) is having the driest multi-decadal period since 800 CE, exacerbated by anthropogenic warming. In this study, we aimed to examine the influence of drought on coccidioidomycosis, an emerging infectious disease in southwestern USA. METHODS: We analysed California census tract-level surveillance data from 2000 to 2020 using generalised additive models and distributed monthly lags on precipitation and temperature. We then developed an ensemble prediction algorithm of incident cases of coccidioidomycosis per census tract to estimate the counterfactual incidence that would have occurred in the absence of drought. FINDINGS: Between April 1, 2000, and March 31, 2020, there were 81 448 reported cases of coccidioidomycosis throughout California. An estimated 1467 excess cases of coccidioidomycosis were observed in California in the 2 years following the drought that occurred between 2007 and 2009, and an excess 2649 drought-attributable cases of coccidioidomycosis were observed in the 2 years following the drought that occurred between 2012 and 2015. These increased numbers of cases more than offset the declines in cases that occurred during drought. An IQR increase in summer temperatures was associated with 2·02 (95% CI 1·84-2·22) times higher incidence in the following autumn (September to November), and an IQR increase in precipitation in the winter was associated with 1·45 (1·36-1·55) times higher incidence in the autumn. The effect of winter precipitation was 36% (25-48) stronger when preceded by two dry, rather than average, winters. Incidence in arid counties was most sensitive to precipitation fluctuations, while incidence in wetter counties was most sensitive to temperature. INTERPRETATION: In California, multi-year cycles of dry conditions followed by a wet winter increases transmission of coccidioidomycosis, especially in historically wetter areas. With anticipated increasing frequency of drought in southwestern USA, continued expansion of coccidioidomycosis, along with more intense seasons, is expected. Our results motivate the need for heightened precautions against coccidioidomycosis in seasons that follow major droughts. FUNDING: National Institutes of Health.


Asunto(s)
Coccidioidomicosis , Coccidioidomicosis/epidemiología , Sequías , Calor , Humanos , Incidencia , Estaciones del Año
8.
PLoS Comput Biol ; 18(9): e1010575, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36166479

RESUMEN

With the aid of laboratory typing techniques, infectious disease surveillance networks have the opportunity to obtain powerful information on the emergence, circulation, and evolution of multiple genotypes, serotypes or other subtypes of pathogens, informing understanding of transmission dynamics and strategies for prevention and control. The volume of typing performed on clinical isolates is typically limited by its ability to inform clinical care, cost and logistical constraints, especially in comparison with the capacity to monitor clinical reports of disease occurrence, which remains the most widespread form of public health surveillance. Viewing clinical disease reports as arising from a latent mixture of pathogen subtypes, laboratory typing of a subset of clinical cases can provide inference on the proportion of clinical cases attributable to each subtype (i.e., the mixture components). Optimizing protocols for the selection of isolates for typing by weighting specific subpopulations, locations, time periods, or case characteristics (e.g., disease severity), may improve inference of the frequency and distribution of pathogen subtypes within and between populations. Here, we apply the Disease Surveillance Informatics Optimization and Simulation (DIOS) framework to simulate and optimize hand foot and mouth disease (HFMD) surveillance in a high-burden region of western China. We identify laboratory surveillance designs that significantly outperform the existing network: the optimal network reduced mean absolute error in estimated serotype-specific incidence rates by 14.1%; similarly, the optimal network for monitoring severe cases reduced mean absolute error in serotype-specific incidence rates by 13.3%. In both cases, the optimal network designs achieved improved inference without increasing subtyping effort. We demonstrate how the DIOS framework can be used to optimize surveillance networks by augmenting clinical diagnostic data with limited laboratory typing resources, while adapting to specific, local surveillance objectives and constraints.


Asunto(s)
Enfermedad de Boca, Mano y Pie , China/epidemiología , Genotipo , Humanos , Incidencia , Lactante , Serogrupo
9.
Lancet Planet Health ; 6(8): e694-e705, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35932789

RESUMEN

As sustainable development practitioners have worked to "ensure healthy lives and promote well-being for all" and "conserve life on land and below water", what progress has been made with win-win interventions that reduce human infectious disease burdens while advancing conservation goals? Using a systematic literature review, we identified 46 proposed solutions, which we then investigated individually using targeted literature reviews. The proposed solutions addressed diverse conservation threats and human infectious diseases, and thus, the proposed interventions varied in scale, costs, and impacts. Some potential solutions had medium-quality to high-quality evidence for previous success in achieving proposed impacts in one or both sectors. However, there were notable evidence gaps within and among solutions, highlighting opportunities for further research and adaptive implementation. Stakeholders seeking win-win interventions can explore this Review and an online database to find and tailor a relevant solution or brainstorm new solutions.


Asunto(s)
Control de Enfermedades Transmisibles , Desarrollo Sostenible , Humanos
10.
PLoS Negl Trop Dis ; 16(5): e0010389, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35522699

RESUMEN

BACKGROUND: Reliable and field-applicable diagnosis of schistosome infections in non-human animals is important for surveillance, control, and verification of interruption of human schistosomiasis transmission. This study aimed to summarize uses of available diagnostic techniques through a systematic review and meta-analysis. METHODOLOGY AND PRINCIPAL FINDINGS: We systematically searched the literature and reports comparing two or more diagnostic tests in non-human animals for schistosome infection. Out of 4,909 articles and reports screened, 19 met our inclusion criteria, four of which were considered in the meta-analysis. A total of 14 techniques (parasitologic, immunologic, and molecular) and nine types of non-human animals were involved in the studies. Notably, four studies compared parasitologic tests (miracidium hatching test (MHT), Kato-Katz (KK), the Danish Bilharziasis Laboratory technique (DBL), and formalin-ethyl acetate sedimentation-digestion (FEA-SD)) with quantitative polymerase chain reaction (qPCR), and sensitivity estimates (using qPCR as the reference) were extracted and included in the meta-analyses, showing significant heterogeneity across studies and animal hosts. The pooled estimate of sensitivity was 0.21 (95% confidence interval (CI): 0.03-0.48) with FEA-SD showing highest sensitivity (0.89, 95% CI: 0.65-1.00). CONCLUSIONS/SIGNIFICANCE: Our findings suggest that the parasitologic technique FEA-SD and the molecular technique qPCR are the most promising techniques for schistosome diagnosis in non-human animal hosts. Future studies are needed for validation and standardization of the techniques for real-world field applications.


Asunto(s)
Schistosoma , Esquistosomiasis , Animales , Heces , Prevalencia , Estándares de Referencia , Esquistosomiasis/diagnóstico , Sensibilidad y Especificidad
11.
BMC Infect Dis ; 22(1): 242, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35272626

RESUMEN

BACKGROUND: The San Francisco Bay Area was the first region in the United States to enact school closures to mitigate SARS-CoV-2 transmission. The effects of closures on contact patterns for schoolchildren and their household members remain poorly understood. METHODS: We conducted serial cross-sectional surveys (May 2020, September 2020, February 2021) of Bay Area households with children to estimate age-structured daily contact rates for children and their adult household members. We examined changes in contact rates over the course of the COVID-19 pandemic, including after vaccination of household members, and compared contact patterns by household demographics using generalized estimating equations clustered by household. RESULTS: We captured contact histories for 1,967 households on behalf of 2,674 children, comprising 15,087 non-household contacts over the three waves of data collection. Shortly after the start of shelter-in-place orders in May 2020, daily contact rates were higher among children from Hispanic families (1.52 more contacts per child per day; [95% CI: 1.14-2.04]), households whose parents were unable to work from home (1.82; [1.40-2.40]), and households with income < $150,000 (1.75; [1.33-2.33]), after adjusting for other demographic characteristics and household clustering. Between May and August 2020, non-household contacts of children increased by 145% (ages 5-12) and 172% (ages 13-17), despite few children returning to in-person instruction. Non-household contact rates among children were higher-by 1.75 [1.28-2.40] and 1.42 [0.89-2.24] contacts per child per day in 5-12 and 13-17 age groups, respectively, in households where at least one adult was vaccinated against COVID-19, compared to children's contact rates in unvaccinated households. CONCLUSIONS: Child contact rates rebounded despite schools remaining closed, as parents obtained childcare, children engaged in contact in non-school settings, and family members were vaccinated. The waning reductions observed in non-household contact rates of schoolchildren and their family members during a prolonged school closure suggests the strategy may be ineffective for long-term SARS-CoV-2 transmission mitigation. Reductions in age-assortative contacts were not as apparent amongst children from lower income households or households where adults could not work from home. Heterogeneous reductions in contact patterns raise concerning racial, ethnic and income-based inequities associated with long-term school closures as a COVID-19 mitigation strategy.


Asunto(s)
COVID-19 , Gripe Humana , Adolescente , Adulto , COVID-19/epidemiología , COVID-19/prevención & control , Niño , Preescolar , Estudios Transversales , Humanos , Gripe Humana/epidemiología , Pandemias , SARS-CoV-2 , Estados Unidos
12.
Annu Rev Public Health ; 43: 271-291, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-34982587

RESUMEN

Emerging evidence supports a link between environmental factors-including air pollution and chemical exposures, climate, and the built environment-and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and coronavirus disease 2019 (COVID-19) susceptibility and severity. Climate, air pollution, and the built environment have long been recognized to influence viral respiratory infections, and studies have established similar associations with COVID-19 outcomes. More limited evidence links chemical exposures to COVID-19. Environmental factors were found to influence COVID-19 through four major interlinking mechanisms: increased risk of preexisting conditions associated with disease severity; immune system impairment; viral survival and transport; and behaviors that increase viral exposure. Both data and methodologic issues complicate the investigation of these relationships, including reliance on coarse COVID-19 surveillance data; gaps in mechanistic studies; and the predominance of ecological designs. We evaluate the strength of evidence for environment-COVID-19 relationships and discuss environmental actions that might simultaneously address the COVID-19 pandemic, environmental determinants of health, and health disparities.


Asunto(s)
Contaminación del Aire , COVID-19 , Contaminación del Aire/efectos adversos , COVID-19/epidemiología , Humanos , Incidencia , Pandemias , SARS-CoV-2
14.
Lancet Reg Health Am ; 5: 100133, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34849504

RESUMEN

BACKGROUND: We examined school reopening policies amidst ongoing transmission of the highly transmissible Delta variant, accounting for vaccination among individuals ≥12 years. METHODS: We collected data on social contacts among school-aged children in the California Bay Area and developed an individual-based transmission model to simulate transmission of the Delta variant of SARS-CoV-2 in schools. We evaluated the additional infections in students and teachers/staff resulting over a 128-day semester from in-school instruction compared to remote instruction when various NPIs (mask use, cohorts, and weekly testing of students/teachers) were implemented, across various community-wide vaccination coverages (50%, 60%, 70%), and student (≥12 years) and teacher/staff vaccination coverages (50% - 95%). FINDINGS: At 70% vaccination coverage, universal masking reduced infections by >57% among students. Masking plus 70% vaccination coverage enabled achievement of <50 excess cases per 1,000 students/teachers, but stricter risk tolerances, such as <25 excess infections per 1,000 students/teachers, required a cohort approach in elementary and middle school populations. In the absence of NPIs, increasing the vaccination coverage of community members from 50% to 70% or elementary teachers from 70% to 95% reduced the excess rate of infection among elementary school students attributable to school transmission by 24% and 37%, respectively. INTERPRETATIONS: Amidst Delta variant circulation, we found that schools are not inherently low risk, yet can be made so with high community vaccination coverages and masking. Vaccination of adults protects unvaccinated children. FUNDING: National Science Foundation grant no. 2032210; National Institutes of Health grant nos. R01AI125842 and R01AI148336; MIDAS Coordination Center (MIDASSUP2020-4).

15.
PLoS Negl Trop Dis ; 15(9): e0009712, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34570777

RESUMEN

Schistosome parasites infect more than 200 million people annually, mostly in sub-Saharan Africa, where people may be co-infected with more than one species of the parasite. Infection risk for any single species is determined, in part, by the distribution of its obligate intermediate host snail. As the World Health Organization reprioritizes snail control to reduce the global burden of schistosomiasis, there is renewed importance in knowing when and where to target those efforts, which could vary by schistosome species. This study estimates factors associated with schistosomiasis risk in 16 villages located in the Senegal River Basin, a region hyperendemic for Schistosoma haematobium and S. mansoni. We first analyzed the spatial distributions of the two schistosomes' intermediate host snails (Bulinus spp. and Biomphalaria pfeifferi, respectively) at village water access sites. Then, we separately evaluated the relationships between human S. haematobium and S. mansoni infections and (i) the area of remotely-sensed snail habitat across spatial extents ranging from 1 to 120 m from shorelines, and (ii) water access site size and shape characteristics. We compared the influence of snail habitat across spatial extents because, while snail sampling is traditionally done near shorelines, we hypothesized that snails further from shore also contribute to infection risk. We found that, controlling for demographic variables, human risk for S. haematobium infection was positively correlated with snail habitat when snail habitat was measured over a much greater radius from shore (45 m to 120 m) than usual. S. haematobium risk was also associated with large, open water access sites. However, S. mansoni infection risk was associated with small, sheltered water access sites, and was not positively correlated with snail habitat at any spatial sampling radius. Our findings highlight the need to consider different ecological and environmental factors driving the transmission of each schistosome species in co-endemic landscapes.


Asunto(s)
Schistosoma haematobium/fisiología , Schistosoma mansoni/fisiología , Esquistosomiasis Urinaria/parasitología , Esquistosomiasis mansoni/parasitología , Adolescente , Adulto , Distribución Animal , Animales , Niño , Reservorios de Enfermedades/parasitología , Ecosistema , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ríos/parasitología , Población Rural/estadística & datos numéricos , Schistosoma haematobium/genética , Schistosoma haematobium/aislamiento & purificación , Schistosoma mansoni/genética , Schistosoma mansoni/aislamiento & purificación , Esquistosomiasis Urinaria/epidemiología , Esquistosomiasis Urinaria/transmisión , Esquistosomiasis mansoni/epidemiología , Esquistosomiasis mansoni/transmisión , Senegal/epidemiología , Caracoles/parasitología , Caracoles/fisiología , Adulto Joven
16.
medRxiv ; 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34462757

RESUMEN

BACKGROUND: We examined school reopening policies amidst rising transmission of the highly transmissible Delta variant, accounting for vaccination among individuals aged 12 years and older, with the goal of characterizing risk to students and teachers under various within-school non-pharmaceutical interventions (NPIs) combined with specific vaccination coverage levels. METHODS: We developed an individual-based transmission model to simulate transmission of the Delta variant of SARS-CoV-2 among a synthetic population, representative of Bay Area cities. We parameterized the model using community contact rates from vaccinated households ascertained from a household survey of Bay Area families with children conducted between February - April, 2021. INTERVENTIONS AND OUTCOMES: We evaluated the additional infections in students and teachers/staff resulting over a 128-day semester from in-school instruction compared to remote instruction when various NPIs (mask use, cohorts, and weekly testing of students/teachers) were implemented in schools, across various community-wide vaccination coverages (50%, 60%, 70%), and student (≥12 years) and teacher/staff vaccination coverages (50% - 95%). We quantified the added benefit of universal masking over masking among unvaccinated students and teachers, across varying levels of vaccine effectiveness (45%, 65%, 85%), and compared results between Delta and Alpha variant circulation. RESULTS: The Delta variant sharply increases the risk of within-school COVID-transmission when compared to the Alpha variant. In our highest risk scenario (50% community and within-school vaccine coverage, no within-school NPIs, and predominant circulation of the Delta variant), we estimated that an elementary school could see 33-65 additional symptomatic cases of COVID-19 over a four-month semester (depending on the relative susceptibility of children <10 years). In contrast, under the Bay Area reopening plan (universal mask use, community and school vaccination coverage of 70%), we estimated excess symptomatic infection attributable to school reopening among 2.0-9.7% of elementary students (8-36 excess symptomatic cases per school over the semester), 3.0% of middle school students (13 cases per school) and 0.4% of high school students (3 cases per school). Excess rates among teachers attributable to reopening were similar. Achievement of lower risk tolerances, such as <5 excess infections per 1,000 students or teachers, required a cohort approach in elementary and middle school populations. In the absence of NPIs, increasing the vaccination coverage of community members from 50% to 70% or elementary teachers from 70% to 95% reduced the estimated excess rate of infection among elementary school students attributable to school transmission by 24% and 41%, respectively. We estimated that with 70% coverage of the eligible community and school population with a vaccine that is ≤65% effective, universal masking can avert more cases than masking of unvaccinated persons alone. CONCLUSIONS: Amidst circulation of the Delta variant, our findings demonstrated that schools are not inherently low risk, yet can be made so with high community vaccination coverages and universal masking. Vaccination of adult community members and teachers protects unvaccinated elementary and middle school children. Elementary and middle schools that can support additional interventions, such as cohorts and testing, should consider doing so, particularly if additional studies find that younger children are equally as susceptible as adults to the Delta variant of SARS-CoV-2. LIMITATIONS: We did not consider the effect of social distancing in classrooms, or variation in testing frequency, and considerable uncertainty remains in key transmission parameters.

18.
J R Soc Interface ; 18(177): 20200970, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33849340

RESUMEN

School closures may reduce the size of social networks among children, potentially limiting infectious disease transmission. To estimate the impact of K-12 closures and reopening policies on children's social interactions and COVID-19 incidence in California's Bay Area, we collected data on children's social contacts and assessed implications for transmission using an individual-based model. Elementary and Hispanic children had more contacts during closures than high school and non-Hispanic children, respectively. We estimated that spring 2020 closures of elementary schools averted 2167 cases in the Bay Area (95% CI: -985, 5572), fewer than middle (5884; 95% CI: 1478, 11.550), high school (8650; 95% CI: 3054, 15 940) and workplace (15 813; 95% CI: 9963, 22 617) closures. Under assumptions of moderate community transmission, we estimated that reopening for a four-month semester without any precautions will increase symptomatic illness among high school teachers (an additional 40.7% expected to experience symptomatic infection, 95% CI: 1.9, 61.1), middle school teachers (37.2%, 95% CI: 4.6, 58.1) and elementary school teachers (4.1%, 95% CI: -1.7, 12.0). However, we found that reopening policies for elementary schools that combine universal masking with classroom cohorts could result in few within-school transmissions, while high schools may require masking plus a staggered hybrid schedule. Stronger community interventions (e.g. remote work, social distancing) decreased the risk of within-school transmission across all measures studied, with the influence of community transmission minimized as the effectiveness of the within-school measures increased.


Asunto(s)
COVID-19 , Niño , Humanos , Distanciamiento Físico , Políticas , SARS-CoV-2 , Instituciones Académicas
19.
Emerg Infect Dis ; 27(5): 1266-1273, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33755007

RESUMEN

We review the interaction between coronavirus disease (COVID-19) and coccidioidomycosis, a respiratory infection caused by inhalation of Coccidioides fungal spores in dust. We examine risk for co-infection among construction and agricultural workers, incarcerated persons, Black and Latino populations, and persons living in high dust areas. We further identify common risk factors for co-infection, including older age, diabetes, immunosuppression, racial or ethnic minority status, and smoking. Because these diseases cause similar symptoms, the COVID-19 pandemic might exacerbate delays in coccidioidomycosis diagnosis, potentially interfering with prompt administration of antifungal therapies. Finally, we examine the clinical implications of co-infection, including severe COVID-19 and reactivation of latent coccidioidomycosis. Physicians should consider coccidioidomycosis as a possible diagnosis when treating patients with respiratory symptoms. Preventive measures such as wearing face masks might mitigate exposure to dust and severe acute respiratory syndrome coronavirus 2, thereby protecting against both infections.


Asunto(s)
COVID-19 , Coccidioidomicosis , Coinfección , Anciano , Coccidioidomicosis/epidemiología , Etnicidad , Humanos , Grupos Minoritarios , Pandemias , SARS-CoV-2 , Estados Unidos/epidemiología
20.
Environ Sci Technol ; 55(1): 478-487, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33322894

RESUMEN

The California state government put restrictions on outdoor residential water use, including landscape irrigation, during the 2012-2016 drought. The public health implications of these actions are largely unknown, particularly with respect to mosquito-borne disease transmission. While residential irrigation facilitates persistence of mosquitoes by increasing the availability of standing water, few studies have investigated its effects on vector abundance. In two study sub-regions in the Los Angeles Basin, we examined the effect of outdoor residential water use restrictions on the abundance of the most important regional West Nile virus vector, Culex quinquefasciatus. Using spatiotemporal random forest models fit to Cx. abundance during drought and non-drought years, we generated counterfactual estimates of Cx. abundance under a hypothetical drought scenario without water use restrictions. We estimate that Cx. abundance would have been 44% and 39% larger in West Los Angeles and Orange counties, respectively, if outdoor water usage had remained unchanged. Our results suggest that drought, without mandatory water use restrictions, may counterintuitively increase the availability of larval habitats for vectors in naturally dry, highly irrigated settings and such mandatory water use restrictions may constrain Cx. abundance, which could reduce the risk of mosquito-borne disease while helping urban utilities maintain adequate water supplies.


Asunto(s)
Culex , Agua , Animales , California , Vectores de Enfermedades , Sequías , Los Angeles , Mosquitos Vectores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...