Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Inorg Chem ; 29(2): 201-216, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38587623

RESUMEN

The presented study proposes an efficient utilization of a common Thymus serpyllum L. (wild thyme) plant as a highly potent biosorbent of Cu(II) and Pb(II) ions and the efficient interaction of the copper-laden plant with two opportunistic bacteria. Apart from biochars that are commonly used for adsorption, here we report the direct use of native plant, which is potentially interesting also for soil remediation. The highest adsorption capacity for Cu(II) and Pb(II) ions (qe = 12.66 and 53.13 mg g-1, respectively) was achieved after 10 and 30 min of adsorption, respectively. Moreover, the Cu-laden plant was shown to be an efficient antibacterial agent against the bacteria Escherichia coli and Staphylococcus aureus, the results being slightly better in the former case. Such an activity is enabled only via the interaction of the adsorbed ions effectively distributed within the biological matrix of the plant with bacterial cells. Thus, the sustainable resource can be used both for the treatment of wastewater and, after an effective embedment of metal ions, for the fight against microbes.


Asunto(s)
Antibacterianos , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antibacterianos/metabolismo , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Adsorción , Metales Pesados/química , Metales Pesados/metabolismo , Metales Pesados/farmacología , Thymus (Planta)/química , Plomo/química , Plomo/metabolismo , Cobre/química , Cobre/farmacología , Cobre/metabolismo , Pruebas de Sensibilidad Microbiana
2.
Front Chem ; 11: 1178225, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37342159

RESUMEN

There is still a need for synthetic approaches that are much faster, easier to scale up, more robust and efficient for generating gold(I)-thiolates that can be easily converted into gold-thiolate nanoclusters. Mechanochemical methods can offer significantly reduced reaction times, increased yields and straightforward recovery of the product, compared to the solution-based reactions. For the first time, a new simple, rapid and efficient mechanochemical redox method in a ball-mill was developed to produce the highly luminescent, pH-responsive Au(I)-glutathionate, [Au(SG)]n. The efficient productivity of the mechanochemical redox reaction afforded orange luminescent [Au(SG)]n in isolable amounts (mg scale), usually not achieved by more conventional methods in solution. Then, ultrasmall oligomeric Au10-12(SG)10-12 nanoclusters were prepared by pH-triggered dissociation of [Au(SG)]n. The pH-stimulated dissociation of the Au(I)-glutathionate complex provides a time-efficient synthesis of oligomeric Au10-12(SG)10-12 nanoclusters, it avoids high-temperature heating or the addition of harmful reducing agent (e.g., carbon monoxide). Therefore, we present herein a new and eco-friendly methodology to access oligomeric glutathione-based gold nanoclusters, already finding applications in biomedical field as efficient radiosensitizers in cancer radiotherapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...