Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 16(32): 7562-7575, 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32716420

RESUMEN

In several upcoming rheological approaches, including methods of micro- and nanorheology, the measurement geometry is of critical impact on the interpretation of the results. The relative size of the probe objects employed (as compared to the intrinsic length scales of the sample to be investigated) becomes of crucial importance, and there is increasing interest to investigate the dynamic processes and mobility in nanostructured materials. A combination of different rheological approaches based on the rotation of magnetically blocked nanoprobes is used to systematically investigate the size-dependent diffusion behavior in aqueous poly(ethylene glycol) (PEG) solutions with special attention paid to the relation of probe size to characteristic length scales within the polymer solutions. We employ two types of probe particles: nickel rods of hydrodynamic length Lh between 200 nm and 650 nm, and cobalt ferrite spheres with diameter dh between 13 nm and 23 nm, and examine the influence of particle size and shape on the nanorheological information obtained in model polymer solutions based on two related, dynamic-magnetic approaches. The results confirm that as long as the investigated solutions are not entangled, and the particles are much larger than the macromolecular correlation length, a good accordance between macroscopic and nanoscopic results, whereas a strong size-dependent response is observed in cases where the particles are of similar size or smaller than the radius of gyration Rg or the correlation length ξ of the polymer solution.

2.
ACS Appl Mater Interfaces ; 11(3): 3160-3168, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30582794

RESUMEN

By studying the response behavior of ferrofluids of 6-22 nm maghemite nanoparticles in glycerol solution exposed to external magnetic fields, we demonstrate the ability of Mössbauer spectroscopy to access a variety of particle dynamics and static magnetic particle characteristics at the same time, offering an extensive characterization of ferrofluids for in-field applications; field-dependent particle alignment and particle mobility in terms of Brownian motion have been extracted simultaneously from a series of Mössbauer spectra for single-core particles as well as for particle agglomerates. Additionally, information on Néel superspin relaxation and surface spin frustration could be directly inferred from this analysis. Parameters regarding Brownian particle dynamics, as well as Néel-type relaxation behavior, obtained via Mössbauer spectroscopy, have been verified by complementary AC-susceptometry experiments, modulating the AC-field amplitude, and using an extended frequency range of 10-1 to 106 Hz, while field-dependent particle alignment has been cross-checked via magnetometry.

3.
Nano Lett ; 18(11): 6856-6866, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30336062

RESUMEN

Herein, by studying a stepwise phase transformation of 23 nm FeO-Fe3O4 core-shell nanocubes into Fe3O4, we identify a composition at which the magnetic heating performance of the nanocubes is not affected by the medium viscosity and aggregation. Structural and magnetic characterizations reveal the transformation of the FeO-Fe3O4 nanocubes from having stoichiometric phase compositions into Fe2+-deficient Fe3O4 phases. The resultant nanocubes contain tiny compressed and randomly distributed FeO subdomains as well as structural defects. This phase transformation causes a 10-fold increase in the magnetic losses of the nanocubes, which remain exceptionally insensitive to the medium viscosity as well as aggregation unlike similarly sized single-phase magnetite nanocubes. We observe that the dominant relaxation mechanism switches from Néel in fresh core-shell nanocubes to Brownian in partially oxidized nanocubes and once again to Néel in completely treated nanocubes. The Fe2+ deficiencies and structural defects appear to reduce the magnetic energy barrier and anisotropy field, thereby driving the overall relaxation into Néel process. The magnetic losses of these nanoparticles remain unchanged through a progressive internalization/association to ovarian cancer cells. Moreover, the particles induce a significant cell death after being exposed to hyperthermia treatment. Here, we present the largest heating performance that has been reported to date for 23 nm iron oxide nanoparticles under intracellular conditions. Our findings clearly demonstrate the positive impacts of the Fe2+ deficiencies and structural defects in the Fe3O4 structure on the heating performance into intracellular environment.


Asunto(s)
Compuestos Férricos/química , Hipertermia Inducida/métodos , Campos Magnéticos , Nanopartículas de Magnetita/química
4.
J Magn Magn Mater ; 360: 169-173, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25729125

RESUMEN

Sensitivity and spatial resolution in Magnetic Particle Imaging are affected by magnetic properties of the nanoparticle tracers used during imaging. Here, we have carried out a comprehensive magnetic characterization of single-core iron oxide nanoparticles that were designed for MPI. We used ac susceptometry, fluxgate magnetorelaxometry, and magnetic particle spectroscopy to evaluate the tracer's magnetic core size, hydrodynamic size, and magnetic anisotropy. Our results present a self-consistent set of magnetic and structural parameters for the tracers that is consistent with direct measurements of size using transmission electron microscopy and dynamic light scattering and that can be used to better understand their MPI performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA