Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Integr Plant Biol ; 65(6): 1585-1601, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36738228

RESUMEN

Sphingolipids are the structural components of membrane lipid bilayers and act as signaling molecules in many cellular processes. Serine palmitoyltransferase (SPT) is the first committed and rate-limiting enzyme in the de novo sphingolipids biosynthetic pathway. The core SPT enzyme is a heterodimer consisting of LONG-CHAIN BASE1 (LCB1) and LCB2 subunits. SPT activity is inhibited by orosomucoid proteins and stimulated by small subunits of SPT (ssSPTs). However, whether LCB1 is modified and how such modification might regulate SPT activity have to date been unclear. Here, we show that activation of MITOGEN-ACTIVATED PROTEIN KINASE 3 (MPK3) and MPK6 by upstream MKK9 and treatment with Flg22 (a pathogen-associated molecular pattern) increases SPT activity and induces the accumulation of sphingosine long-chain base t18:0 in Arabidopsis thaliana, with activated MPK3 and MPK6 phosphorylating AtLCB1. Phosphorylation of AtLCB1 strengthened its binding with AtLCB2b, promoted its binding with ssSPTs, and stimulated the formation of higher order oligomeric and active SPT complexes. Our findings therefore suggest a novel regulatory mechanism for SPT activity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Serina C-Palmitoiltransferasa/metabolismo , Arabidopsis/metabolismo , Fosforilación , Esfingolípidos/metabolismo , Proteínas/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas de Arabidopsis/metabolismo
3.
EMBO J ; 42(1): e110518, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36341575

RESUMEN

Unusually low temperatures caused by global climate change adversely affect rice production. Sensing cold to trigger signal network is a key base for improvement of chilling tolerance trait.  Here, we report that Oryza sativa Calreticulin 3 (OsCRT3) localized at the endoplasmic reticulum (ER) exhibits conformational changes under cold stress, thereby enhancing its interaction with CBL-interacting protein kinase 7 (OsCIPK7) to sense cold. Phenotypic analyses of OsCRT3 knock-out mutants and transgenic overexpression lines demonstrate that OsCRT3 is a positive regulator in chilling tolerance. OsCRT3 localizes at the ER and mediates increases in cytosolic calcium levels under cold stress. Notably, cold stress triggers secondary structural changes of OsCRT3 and enhances its binding affinity with OsCIPK7, which finally boosts its kinase activity. Moreover, Calcineurin B-like protein 7 (OsCBL7) and OsCBL8 interact with OsCIPK7 specifically on the plasma membrane. Taken together, our results thus identify a cold-sensing mechanism that simultaneously conveys cold-induced protein conformational change, enhances kinase activity, and Ca2+ signal generation to facilitate chilling tolerance in rice.


Asunto(s)
Calreticulina , Oryza , Calreticulina/metabolismo , Oryza/genética , Oryza/metabolismo , Temperatura , Frío , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
J Exp Bot ; 73(1): 413-428, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34499162

RESUMEN

Ethylene response factor (ERF) Group VII members generally function in regulating plant growth and development, abiotic stress responses, and plant immunity in Arabidopsis; however, the details of the regulatory mechanism by which Group VII ERFs mediate plant immune responses remain elusive. Here, we characterized one such member, ERF72, as a positive regulator that mediates resistance to the necrotrophic pathogen Botrytis cinerea. Compared with the wild-type (WT), the erf72 mutant showed lower camalexin concentration and was more susceptible to B. cinerea, while complementation of ERF72 in erf72 rescued the susceptibility phenotype. Moreover, overexpression of ERF72 in the WT promoted camalexin biosynthesis and increased resistance to B. cinerea. We identified the camalexin-biosynthesis genes PAD3 and CYP71A13 and the transcription factor WRKY33 as target genes of ERF72. We also determined that MPK3 and MPK6 phosphorylated ERF72 at Ser151 and improved its transactivation activity, resulting in increased camalexin concentration and increased resistance to B. cinerea. Thus, ERF72 acts in plant immunity to coordinate camalexin biosynthesis both directly by regulating the expression of biosynthetic genes and indirectly by targeting WRKK33.


Asunto(s)
Proteínas de Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis , Regulación de la Expresión Génica de las Plantas , Indoles , Fosforilación , Enfermedades de las Plantas/genética , Tiazoles
5.
Methods Mol Biol ; 2358: 159-168, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34270053

RESUMEN

Pro-Q diamond phosphoprotein gel stain is a fluorescent stain to detect phosphorylated proteins in polyacrylamide gels with high sensitivity. Here, we describe an entire procedure for phosphoproteomics analysis of Arabidopsis seedlings by a combination of Pro-Q diamond stain and two-dimensional gel electrophoresis (2-DE). The workflow involves total protein preparation, protein separation by 2-DE, the second-dimensional gel staining, phosphoproteins detection, and peptides preparation for matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. Approximately 300 phosphoproteins can be detected using this method.


Asunto(s)
Electroforesis en Gel Bidimensional , Diamante , Dimetilpolisiloxanos , Electroforesis en Gel de Poliacrilamida , Colorantes Fluorescentes , Glicerol , Fosfoproteínas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
6.
Plant J ; 102(4): 747-760, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31863495

RESUMEN

Mitogen-activated protein kinase (MAPK) cascades play vital roles in regulating plant growth, development, and stress responses. MAPK-like (MPKL) proteins are a group of kinases containing the MAPK signature TxY motif and showing sequence similarity to MAPKs. However, the functions of plant MPKL proteins are currently unknown. The maize (Zea mays) genome contains four genes encoding MPKL proteins, here named ZmMPKL1 to ZmMPKL4. In this study, we show that ZmMPKL1 possesses kinase activity and that drought-induced ZmMPKL1 expression, ZmMPKL1 overexpression and knockout maize seedlings exhibited no visible morphological difference from wild-type B73 seedlings when grown under normal conditions. By contrast, under drought conditions, ZmMPKL1-overexpressing seedlings showed increased stomatal aperture, water loss, and leaf wilting and knockout seedlings showed the opposite phenotypes. Moreover, these drought-sensitive phenotypes in ZmMPKL1-overexpressing seedlings were restored by exogenous abscisic acid (ABA). ZmMPKL1 overexpression reduced drought-induced ABA production in seedlings and the knockout showed enhanced ABA production. Drought-induced transcription of ABA biosynthetic genes were suppressed and ABA catabolic genes were enhanced in ZmMPKL1-overexpressing seedlings, while their transcription were reversely regulated in knockout seedlings. These results suggest that ZmMPKL1 positively regulates seedlings drought sensitivity by altering the transcription of ABA biosynthetic and catabolic genes, and ABA homeostasis.


Asunto(s)
Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Zea mays/genética , Secuencia de Aminoácidos , Sequías , Técnicas de Inactivación de Genes , Proteínas Quinasas Activadas por Mitógenos/genética , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Alineación de Secuencia , Estrés Fisiológico , Agua/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/fisiología
7.
J Exp Bot ; 71(1): 188-203, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31563949

RESUMEN

Abscisic acid (ABA) regulates numerous developmental processes and drought tolerance in plants. Calcium-dependent protein kinases (CPKs) are important Ca2+ sensors playing crucial roles in plant growth and development as well as responses to stresses. However, the molecular mechanisms of many CPKs in ABA signaling and drought tolerance remain largely unknown. Here we combined protein interaction studies, and biochemical and genetic approaches to identify and characterize substrates that were phosphorylated by CPK6 and elucidated the mechanism that underlines the role of CPK6 in ABA signaling and drought tolerance. The expression of CPK6 is induced by ABA and dehydration. Two cpk6 T-DNA insertion mutants are insensitive to ABA during seed germination and root elongation of seedlings; in contrast, overexpression of CPK6 showed the opposite phenotype. Moreover, CPK6-overexpressing lines showed enhanced drought tolerance. CPK6 interacts with and phosphorylates a subset of core ABA signaling-related transcription factors, ABA-responsive element-binding factors (ABFs/AREBs), and enhances their transcriptional activities. The phosphorylation sites in ABF3 and ABI5 were also identified through MS and mutational analyses. Taken together, we present evidence that CPK6 mediates ABA signaling and drought tolerance through phosphorylating ABFs/AREBs. This work thus uncovers a rather conserved mechanism of calcium-dependent Ser/Thr kinases in ABA signaling.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Regulación de la Expresión Génica de las Plantas , Transducción de Señal/genética , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Sequías , Fosforilación
8.
Plant Sci ; 289: 110243, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31623796

RESUMEN

Maize (Zea mays) seeds are the major source of starch all over the world and the excellent model for researching starch synthesis. Seed starch content is a typical quantitative phenotype and many reports revealed that the glycolytic enzymes are involved in regulating starch synthesis, however the regulatory mechanism is still unclear. Here, we present a comparative phosphoproteomic study of three maize inbred lines with different seed starch content. It reveals that abundances of 62 proteins and 63 phosphoproteins were regulated during maize seed development. Dynamics of 17 enzymes related to glycolysis and starch synthesis were used to construct a phosphorylation regulatory network of starch synthesis. It shows that starch synthesis and glycolysis in maize seeds utilize the same hexose phosphates pool coming from sorbitol and sucrose as carbon source, and phosphorylation of ZmENO1 are suggested to contribute to increase starch content, because it is positively related to seed starch content in different developmental stages and different lines, and the phosphor-mimic mutant (ZmENO1S43D) damaged its enzyme activity which is vital in glycolysis. Our results provide a new sight into regulatory process of seed starch synthesis and can be used in maize breeding for high starch content.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Fosfoproteínas/genética , Fosfopiruvato Hidratasa/genética , Proteínas de Plantas/genética , Proteoma/genética , Almidón/metabolismo , Zea mays/metabolismo , Fosfoproteínas/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Zea mays/enzimología , Zea mays/genética , Zea mays/crecimiento & desarrollo
9.
Mol Plant ; 12(7): 967-983, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30947022

RESUMEN

Plants utilize intracellular nucleotide-binding leucine-rich repeat domain-containing receptors (NLRs) to recognize pathogen effectors and induce a robust defense response named effector-triggered immunity (ETI). The Arabidopsis NLR protein HOPZ-ACTIVATED RESISTANCE 1 (ZAR1) forms a precomplex with HOPZ-ETI-DEFICIENT 1 (ZED1), a receptor-like cytoplasmic kinase (RLCK) XII-2 subfamily member, to recognize the Pseudomonas syringae effector HopZ1a. We previously described a dominant mutant of Arabidopsis ZED1, zed1-D, which displays temperature-sensitive autoimmunity in a ZAR1-dependent manner. Here, we report that the RLCKs SUPPRESSOR OF ZED1-D1 (SZE1) and SZE2 associate with the ZAR1-ZED1 complex and are required for the ZED1-D-activated autoimmune response and HopZ1a-triggered immunity. We show that SZE1 but not SZE2 has autophosphorylation activity, and that the N-terminal myristoylation of both SZE1 and SZE2 is critical for their plasma membrane localization and ZED1-D-activated autoimmunity. Furthermore, we demonstrate that SZE1 and SZE2 both interact with ZAR1 to form a functional complex and are required for resistance against P. syringae pv. tomato DC3000 expressing HopZ1a. We also provide evidence that SZE1 and SZE2 interact with HopZ1a and function together with ZED1 to change the intramolecular interactions of ZAR1, leading to its activation. Taken together, our results reveal SZE1 and SZE2 as critical signaling components of HopZ1a-triggered immunity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Fosfotransferasas/metabolismo , Inmunidad de la Planta , Transducción de Señal/inmunología , Arabidopsis/metabolismo , Proteínas NLR/metabolismo , Fosfotransferasas/inmunología , Inmunidad de la Planta/fisiología , Pseudomonas syringae/inmunología
10.
Front Plant Sci ; 9: 1180, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30245698

RESUMEN

Male sterility (MS) provides a useful breeding tool to harness hybrid vigor for hybrid seed production. It is necessary to generate new male sterile mutant lines for the development of hybrid seed production technology. The CRISPR/Cas9 technology is well suited for targeting genomes to generate male sterile mutants. In this study, we artificially synthesized Streptococcus pyogenes Cas9 gene with biased codons of maize. A CRISPR/Cas9 vector targeting the MS8 gene of maize was constructed and transformed into maize using an Agrobacterium-mediated method, and eight T0 independent transgenic lines were generated. Sequencing results showed that MS8 genes in these T0 transgenic lines were not mutated. However, we detected mutations in the MS8 gene in F1 and F2 progenies of the transgenic line H17. A potential off-target site sequence which had a single nucleotide that was different from the target was also mutated in the F2 progeny of the transgenic line H17. Mutation in the MS8 gene and the male sterile phenotype could be stably inherited by the next generation in a Mendelian fashion. Transgene-free ms8 male sterile plants were obtained by screening the F2 generation of male sterile plants, and the MS phenotype could be introduced into other elite inbred lines for hybrid production.

11.
Plant J ; 96(4): 734-747, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30101424

RESUMEN

In Arabidopsis, embryonic development follows a stereotypical pattern of cell division. Although many factors have been reported to participate in establishment of the proper embryonic pattern, the molecular mechanisms underlying pattern formation are unclear. In this study we showed that RAF22 and RAF28, two RAF-like mitogen-activated protein kinase kinase kinases (MAPKKKs) in Arabidopsis, are involved in the regulation of embryogenesis. The double knockout mutant of RAF22 and RAF28 was embryo lethal. A large proportion of the raf22-/- raf28+/- mutant embryos exhibited various defects, including disordered proembryo cell divisions, disruption of the bilaterally symmetrical structure, abnormally formative divisions of hypophysis and exaggerated suspensor growth. Whereas the kinase active form of RAF22 could complement these embryonic aberrant phenotypes, the kinase inactive form could not. The restrictive expression of the basal cell fate marker WOX8 in the abnormally dividing suspensor cells and the apical cell linage marker WOX2 in the abnormal proembryos indicated that apical and basal cell fates were unchanged in the abnormal embryos. The polar distribution of the auxin maxima and the PIN1 and PIN7 auxin transporters was markedly altered in the abnormal embryos. Our results suggest that RAF22 and RAF28 are important components of embryogenesis and that auxin polar transport may be involved in this regulation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Quinasas Quinasa Quinasa PAM/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , División Celular/genética , División Celular/fisiología , Desarrollo Embrionario/genética , Técnicas de Inactivación de Genes , Ácidos Indolacéticos , Quinasas Quinasa Quinasa PAM/genética , Proteínas de Transporte de Membrana , Fenotipo , Fosfotransferasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Factores de Transcripción , Transcriptoma
12.
Plant Physiol ; 178(2): 907-922, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30158117

RESUMEN

MAPK signaling pathways play critical roles in plant immunity. Here, we silenced multiple genes encoding MAPKs using virus-induced gene silencing mediated by Bean pod mottle virus to identify MAPK genes involved in soybean (Glycine max) immunity. Surprisingly, a strong hypersensitive response (HR) cell death was observed when soybean MAPK KINASE KINASE1 (GmMEKK1), a homolog of Arabidopsis (Arabidopsis thaliana) MEKK1, was silenced. The HR was accompanied by the overaccumulation of defense signaling molecules, salicylic acid (SA) and hydrogen peroxide. Genes involved in primary metabolism, translation/transcription, photosynthesis, and growth/development were down-regulated in GmMEKK1-silenced plants, while the expression of defense-related genes was activated. Accordingly, GmMEKK1-silenced plants were more resistant to downy mildew (Peronospora manshurica) and Soybean mosaic virus compared with control plants. Silencing GmMEKK1 reduced the activation of GmMPK6 but enhanced the activation of GmMPK3 in response to flg22 peptide. Unlike Arabidopsis MPK4, GmMPK4 was not activated by either flg22 or SA. Interestingly, transient overexpression of GmMEKK1 in Nicotiana benthamiana also induced HR. Our results indicate that GmMEKK1 plays both positive and negative roles in immunity and appears to differentially activate downstream MPKs by promoting GmMPK6 activation but suppressing GmMPK3 activation in response to flg22. The involvement of GmMPK4 kinase activity in cell death and in flg22- or SA-triggered defense responses in soybean requires further investigation.


Asunto(s)
Arabidopsis/enzimología , Glycine max/enzimología , Quinasa 1 de Quinasa de Quinasa MAP/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Nicotiana/enzimología , Enfermedades de las Plantas/inmunología , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/fisiología , Muerte Celular , Resistencia a la Enfermedad , Quinasa 1 de Quinasa de Quinasa MAP/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Peronospora/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/genética , Glycine max/inmunología , Glycine max/fisiología , Nicotiana/genética , Nicotiana/inmunología
13.
Curr Protein Pept Sci ; 19(4): 390-400, 2018 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-28190388

RESUMEN

Plant architecture, the three-dimensional organization of the plant body, includes the branching pattern and the size, shape, and position of organs. Plant architecture is genetically controlled and is influenced by environmental conditions. The regulations occur at most of the stages from the first division of the fertilized eggs to the final establishment of plant architecture. Among the various endogenous regulators, protein kinases and their associated signaling pathways have been shown to play important roles in regulating the process of plant architecture establishment. In this review, we summarize recent progress in the understanding of the mechanisms by which plant architecture formation is regulated by protein kinases, especially mitogen-activated protein kinase (MAPK).


Asunto(s)
Plantas/enzimología , Proteínas Quinasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Plantas/anatomía & histología , Plantas Modificadas Genéticamente , Transducción de Señal
14.
J Exp Bot ; 69(3): 423-439, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29244171

RESUMEN

Photomorphogenesis is an important process in which seedlings emerge from soil and begin autotrophic growth. Mechanisms of photomorphogenesis include light signal perception, signal transduction, and the modulation of expression of light-responsive genes, ultimately leading to cellular and developmental changes. Phytochrome-interacting factors (PIFs) play negative regulatory roles in photomorphogenesis. Light-induced activation of phytochromes triggers rapid phosphorylation and degradation of PIFs, but the kinases responsible for the phosphorylation of PIFs are largely unknown. Here, we show that Arabidopsis MPK6 is a kinase involved in phosphorylating PIF3 and regulating red light-induced cotyledon opening, a crucial process during seedling photomorphogenesis. MPK6 was activated by red light, and the cotyledon opening angle in red light was reduced in mpk6 seedlings. MKK10, a MAPKK whose function is currently unclear, appears to act as a kinase upstream of MPK6 in regulating cotyledon opening. Activation of MPK6 by MKK10 led to the phosphorylation of PIF3 and accelerated its turnover in transgenic seedlings. Accordingly, the overexpression of PIF3 suppressed MKK10-induced cotyledon opening. MKK10 and MPK6 function downstream of phyB in regulating seedling cotyledon opening in red light. Therefore, the MKK10-MPK6 cascade appears to mediate the regulation of red-light-controlled seedling photomorphogenesis via a mechanism that might involve the phosphorylation of PIF3.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Plantones/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cotiledón/genética , Cotiledón/crecimiento & desarrollo , Cotiledón/metabolismo , Luz , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Plantones/genética , Plantones/metabolismo
15.
Plant Sci ; 264: 129-137, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28969793

RESUMEN

Mitogen-activated protein kinase (MAPK) cascades play important roles in regulating plant growth, development and stress responses. Here, we report that ZmMKK10, a maize MAP kinase kinase, positively regulates cell death. Sequence comparison to Arabidopsis MKKs has led to ZmMKK10 being classified as a group D MKK. Kinase activity analysis of recombinant ZmMKK10 showed that the Mg2+ ion was required for its kinase activity. Transient expression of ZmMKK10WT or ZmMKK10DD (the active form of ZmMKK10) in maize mesophyll protoplast significantly increased the cell death rate. Inducible expression of ZmMKK10WT or ZmMKK10DD in Arabidopsis transgenic plants caused rapid HR-like cell death, whereas induction of ZmMKK10KR (the inactive form of ZmMKK10) expression in transgenic plants did not yield the same phenotype. Genetic and pharmacological analysis revealed that ZmMKK10-induced cell death in transgenic plants requires the activation of Arabidopsis MPK3 and MPK6 and that it partially depended on ethylene biosynthesis. ZmMPK3 and ZmMPK7, the orthologues of Arabidopsis MPK3 and MPK6, interacted with ZmMKK10 in yeast and ZmMKK10 phosphorylated them both in vitro. Our results demonstrate that ZmMKK10 induces cell death in an ethylene-dependent manner. Furthermore, ZmMPK3 and ZmMPK7 may be the downstream MAPKs in this process.


Asunto(s)
Etilenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Zea mays/enzimología , Secuencia de Aminoácidos , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/fisiología , Muerte Celular , Regulación de la Expresión Génica de las Plantas , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Fosforilación , Filogenia , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Alineación de Secuencia , Zea mays/genética , Zea mays/fisiología
16.
New Phytol ; 215(2): 711-724, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28499073

RESUMEN

Activation of the immune response in plants antagonizes growth and development in the absence of pathogens, and such an autoimmune phenotype is often suppressed by the elevation of ambient temperature. However, molecular regulation of the ambient temperature-sensitive intersection of immune response and growth is largely elusive. A genetic screen identified an Arabidopsis mutant, zed1-D, by its high temperature-dependent growth retardation. A combination of molecular, cytological and genetic approaches was used to investigate the molecular basis behind the temperature-sensitive growth and immune response in zed1-D. A dominant mutation in HOPZ-ETI-DEFICIENT 1 (ZED1) is responsible for a high temperature-dependent autoimmunity and growth retardation in zed1-D. The autoimmune phenotype in zed1-D is dependent on the HOPZ-ACTIVATED RESISTANCE 1 (ZAR1). ZED1 and some ZED1-related kinases (ZRKs) are induced by elevated temperature and function cooperatively to suppress the immune response by modulating the transcription of SUPPRESSOR OF NPR1-1 CONSTITUTIVE 1 (SNC1) in the absence of pathogens. Our data reveal a previously unidentified role of ZRKs in the ambient temperature-sensitive immune response in the absence of pathogens, and thus reveals a possible molecular mechanism underlying the temperature-mediated intersection of immune response and growth in plants.


Asunto(s)
Proteínas de Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Proteínas Portadoras/inmunología , Fosfotransferasas/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Citosol/metabolismo , Regulación de la Expresión Génica de las Plantas , Pleiotropía Genética , Homeostasis , Fenotipo , Fosfotransferasas/genética , Inmunidad de la Planta/fisiología , Plantas Modificadas Genéticamente , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Temperatura
17.
PLoS One ; 12(3): e0174270, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28339488

RESUMEN

Preharvest sprouting reduces the maize quality and causes a significant yield loss in maize production. vp-wl2 is a Mutator (Mu)-induced viviparous mutant in maize, causing white or pale yellow kernels, dramatically reduced carotenoid and ABA content, and a high level of zeta-carotene accumulation. Here, we reported the cloning of the vp-wl2 gene using a modified digestion-ligation-amplification method (DLA). The results showed that an insertion of Mu9 in the first intron of the zeta-carotene desaturase (ZDS) gene results in the vp-wl2 mutation. Previous studies have suggested that ZDS is likely the structural gene of the viviparous9 (vp9) locus. Therefore, we performed an allelic test using vp-wl2 and three vp9 mutants. The results showed that vp-wl2 is a novel allele of the vp9 locus. In addition, the sequences of ZDS gene were identified in these three vp9 alleles. The vp-wl2 mutant gene was subsequently introgressed into four maize inbred lines, and a viviparous phenotype was observed with yield losses from 7.69% to 13.33%.


Asunto(s)
Genes de Plantas , Mutación , Oxidorreductasas/genética , Proteínas de Plantas/genética , Zea mays/fisiología , Alelos , Zea mays/genética
18.
Plant Physiol ; 173(4): 2265-2277, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28209842

RESUMEN

Germ cells are indispensable carriers of genetic information from one generation to the next. In contrast to the well-understood process in animals, information on the mechanism of germ cell initiation in plants is very limited. SPOROCYTELESS/NOZZLE was previously identified as an essential regulator of diploid germ cell (archesporial cell) differentiation in the stamens and ovules of Arabidopsis (Arabidopsis thaliana). Although SPOROCYTELESS (SPL) transcription is activated by the floral organ identity regulator AGAMOUS and epigenetically regulated by SET DOMAIN GROUP2, little is known about the regulation of the SPL protein. Here, we report that the protein kinases MPK3 and MPK6 can both interact with SPL in vitro and in vivo and can phosphorylate the SPL protein in vitro. In addition, phosphorylation of the SPL protein by MPK3/6 is required for SPL function in the Arabidopsis anther, as measured by its effect on archesporial cell differentiation. We further demonstrate that phosphorylation enhances SPL protein stability. This work not only uncovers the importance of SPL phosphorylation for its regulatory role in Arabidopsis anther development, but also supports the hypothesis that the regulation of precise spatiotemporal patterning of germ cell initiation and that differentiation is achieved progressively through multiple levels of regulation, including transcriptional and posttranslational modification.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Flores/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Diferenciación Celular/genética , Flores/genética , Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Células Germinativas de las Plantas/citología , Células Germinativas de las Plantas/metabolismo , Inmunohistoquímica , Microscopía Fluorescente , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación , Proteínas Nucleares/genética , Fosforilación , Plantas Modificadas Genéticamente , Unión Proteica , Estabilidad Proteica , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
Plant Cell Environ ; 40(8): 1317-1331, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28102910

RESUMEN

Previous physiological and pharmacological studies have suggested that the activity of phosphoinositide-specific phospholipase C (PI-PLC) plays an important role in regulating plant salt stress responses by altering the intracellular Ca2+ concentration. However, the individual members of plant PLCs involved in this process need to be identified. Here, the function of AtPLC4 in the salt stress response of Arabidopsis seedlings was analysed. plc4 mutant seedlings showed hyposensitivity to salt stress compared with Col-0 wild-type seedlings, and the salt hyposensitive phenotype could be complemented by the expression of native promoter-controlled AtPLC4. Transgenic seedlings with AtPLC4 overexpression (AtPLC4 OE) exhibited a salt-hypersensitive phenotype, while transgenic seedlings with its inactive mutant expression (AtPLC4m OE) did not exhibit this phenotype. Using aequorin as a Ca2+ indicator in plc4 mutant and AtPLC4 OE seedlings, AtPLC4 was shown to positively regulate the salt-induced Ca2+ increase. The salt-hypersensitive phenotype of AtPLC4 OE seedlings was partially rescued by EGTA. An analysis of salt-responsive genes revealed that the transcription of RD29B, MYB15 and ZAT10 was inversely regulated in plc4 mutant and AtPLC4 OE seedlings. Our findings suggest that AtPLC4 negatively regulates the salt tolerance of Arabidopsis seedlings, and Ca2+ may be involved in regulating this process.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/fisiología , Fosfoinositido Fosfolipasa C/metabolismo , Tolerancia a la Sal , Plantones/fisiología , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Señalización del Calcio/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Modelos Biológicos , Mutación/genética , Fosfoinositido Fosfolipasa C/química , Tolerancia a la Sal/efectos de los fármacos , Plantones/efectos de los fármacos , Sodio/metabolismo , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Factores de Tiempo , Transcripción Genética/efectos de los fármacos
20.
Plant Physiol ; 173(2): 1391-1408, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27913741

RESUMEN

The mitogen-activated protein kinase (MAPK) cascade is an evolutionarily conserved signal transduction module involved in transducing extracellular signals to the nucleus for appropriate cellular adjustment. This cascade essentially consists of three components: a MAPK kinase kinase (MAPKKK), a MAPK kinase, and a MAPK, connected to each other by the event of phosphorylation. Here, we report the characterization of a MAPKKK, ABA-INSENSITIVE PROTEIN KINASE1 (AIK1), which regulates abscisic acid (ABA) responses in Arabidopsis (Arabidopsis thaliana). T-DNA insertion mutants of AIK1 showed insensitivity to ABA in terms of both root growth and stomatal response. AIK1 functions in ABA responses via regulation of root cell division and elongation, as well as stomatal responses. The activity of AIK1 is induced by ABA in Arabidopsis and tobacco (Nicotiana benthamiana), and the Arabidopsis protein phosphatase type 2C, ABI1, a negative regulator of ABA signaling, restricts AIK1 activity by dephosphorylation. Bimolecular fluorescence complementation analysis showed that MPK3, MPK6, and AIK1 interact with MKK5. The single mutant seedlings of mpk6 and mkk5 have similar phenotypes to aik1, but mkk4 does not. AIK1 was localized in the cytoplasm and shown to activate MKK5 by protein phosphorylation, which was an ABA-activated process. Constitutively active MKK5 in aik1 mutant seedlings complements the ABA-insensitive root growth phenotype of aik1 The activity of MPK6 was increased by ABA in wild-type seedlings, but its activation by ABA was impaired in aik1 and aik1 mkk5 mutants. These findings clearly suggest that the AIK1-MKK5-MPK6 cascade functions in the ABA regulation of primary root growth and stomatal response.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/genética , Estomas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Nicotiana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...