Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(4): 3500-3515, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38206084

RESUMEN

Polymorphic transformation of molecular crystals is a fundamental phase transition process, and it is important practically in the chemical, material, biopharmaceutical, and energy storage industries. However, understanding of the transformation mechanism at the molecular level is poor due to the extreme simulating challenges in enhanced sampling and formulating order parameters (OPs) as the collective variables that can distinguish polymorphs with quite similar and complicated structures so as to describe the reaction coordinate. In this work, two kinds of OPs for CL-20 were constructed by the bond distances, bond orientations and relative orientations. A K-means clustering algorithm based on the Euclidean distance and sample weight was used to smooth the initial finite temperature string (FTS), and the minimum free energy path connecting ß-CL-20 and ε-CL-20 was sketched by the string method in collective variables, and the free energy profile along the path and the nucleation kinetics were obtained by Markovian milestoning with Voronoi tessellations. In comparison with the average-based sampling, the K-means clustering algorithm provided an improved convergence rate of FTS. The simulation of transformation was independent of OP types but was affected greatly by finite-size effects. A surface-mediated local nucleation mechanism was confirmed and the configuration located at the shoulder of potential of mean force, rather than overall maximum, was confirmed to be the critical nucleus formed by the cooperative effect of the intermolecular interactions. This work provides an effective way to explore the polymorphic transformation of caged molecular crystals at the molecular level.

2.
Molecules ; 28(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36985558

RESUMEN

Controlling the selectivity of a detonation initiation reaction of explosive is essential to reduce sensitivity, and it seems impossible to reduce it by strengthening the external electric field. To verify this, the effects of external electric fields on the initiation reactions in NH2NO2∙∙∙NH3, a model system of the nitroamine explosive with alkaline additive, were investigated at the MP2/6-311++G(2d,p) and CCSD(T)/6-311++G(2d,p) levels. The concerted effect in the intermolecular hydrogen exchange is characterized by an index of the imaginary vibrations. Due to the weakened concerted effects by the electric field along the -x-direction opposite to the "reaction axis", the dominant reaction changes from the intermolecular hydrogen exchange to 1,3-intramolecular hydrogen transference with the increase in the field strengths. Furthermore, the stronger the field strengths, the higher the barrier heights become, indicating the lower sensitivities. Therefore, by increasing the field strength and adjusting the orientation between the field and "reaction axis", not only can the reaction selectivity be controlled, but the sensitivity can also be reduced, in particular under a super-strong field. Thus, a traditional concept, in which the explosive is dangerous under the super-strong external electric field, is theoretically broken. Compared to the neutral medium, a low sensitivity of the explosive with alkaline can be achieved under the stronger field. Employing atoms in molecules, reduced density gradient, and surface electrostatic potentials, the origin of the reaction selectivity and sensitivity change is revealed. This work provides a new idea for the technical improvement regarding adding the external electric field into the explosive system.

3.
Adv Sci (Weinh) ; 10(12): e2206386, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36815394

RESUMEN

White-light-emitting carbon dots (WCDs) show innate advantages as phosphors in white light-emitting diodes (WLEDs). For WLEDs, the color rendering index (CRI) is the most important metric to evaluate its performance. Herein, WCDs are prepared by a facile one-step solvothermal reaction of trimellitic acid and o-phenylenediamine. It consists of four CDs identified by column chromatography as blue, green, yellow, red, and thus white light is a superposition of these four types of light. The mixture of the four CDs undergoes Förster resonance energy transfer to induce the generation of white light. The photoluminescence of WCDs originates from the synergistic effect of carbon core and surface states. Thereinto, the carbon core states dominate in RCDs, and the increase of amide contents and degree of conjugation promote the redshift of the emission spectra, which is further confirmed by theoretical calculations. In addition, a high CRI of 97 is achieved when the WCDs are used as phosphors to fabricate WLEDs, which is almost the highest value up to now. The multicolor LEDs can also be fabricated by using the four multicolor CDs as phosphors, respectively. This work provides a novel approach to explore the rapid preparation of low-cost, high-performance WCDs and CDs-based WLEDs.

4.
J Mol Model ; 29(2): 39, 2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36640252

RESUMEN

CONTEXT: The UV(ultraviolet) absorption spectrum of PETN under different electric field loading directions(X, Y, and Z) with the value of strength range from 0.001 a.u. to 0.006 a.u. was calculated with the TDDFT(Time-dependent density functional) in this work. With the increase of electric field strength, the absorbance of PETN in the ultraviolet band decreases. To explain the action mechanism of the electric field on PETN UV(ultraviolet) absorption spectrum, we analyzed and counted the contribution rate, oscillator strength, and vertical excitation energy of the main excitation process whose contribution rate to the UV absorption spectrum is greater than 10%. The contribution of PETN to the UV spectrum in all directions without an electric field was also listed to investigate the anisotropy of PETN in the excitation process under an electric field. The hole-electron analysis showed that the electric field will enhance the charge transfer characteristics in the excitation process of PETN. To investigate the anisotropy of the response under different electric field application directions, the contribution of the UV absorption spectrum in different directions was studied. METHODS: Optimization and TDDFT calculation were performed at the level of M06-2X/def2-TZVP and PBE0/def2-TZVP respectively, with Gaussian09 program. The hole-electron analysis and UV absorption spectrum plotting were performed with Multiwfn3.8.

5.
J Mol Model ; 28(12): 401, 2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36435941

RESUMEN

In order to reveal the nature of the acidity in explosive product, the acidities and cooperativity effects from the intermolecular H-bonding interactions in the LLM-105∙∙∙(HNO3)2 ternary systems were investigated at the B3LYP/6-311 + + G** and M062X/6-311 + + G** levels, with the integral equation formalism polarized continuum model (IEFPCM) based on the self-consistent-reaction-field. The results show that for the ternary systems, the intermolecular H-bonding interactions are stronger than those in the binary complexes, resulting in the lower [H+] concentrations and larger pKa1 values upon the ternary-complex formations. However, there is no obvious correlation between the acidities and cooperativity effects or APT charges of the H atoms involving the H-bonds. Surface electrostatic potential (ESP) and reduced density gradient are used to reveal the nature of the H-bond and acidity. Interestingly, the acidity is closely related to the ESPs of the H atom (VS,H) involving the intermolecular H-bond, but not to the statistical quantities. This is mainly because both acidity and VS,H are the local properties of system, whereas the cooperativity and statistical quantity of ESP are the global property.

6.
J Mol Model ; 28(11): 375, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36324010

RESUMEN

In order to reduce the vulnerability, the responses to shock waves for booster explosives JO9C, JH14, JH6, and insensitive RDX were evaluated using shock wave partition loading test. To explain the experimental results, molecular dynamics simulation, intermolecular interaction and bond dissociation energy (BDE), and shock initiation pressures were evaluated using the B3LYP, MP2 (full), and M06-2X methods with the 6-311 + + G(2df,2p) basis set. The order of the responsivity is JO9C > JH14 > JH6 > insensitive RDX. The binding energies follow the order of JH14* ≈ JO9C* < insensitive RDX* < JH6*. The interaction energies and BDEs are in RDX∙∙∙(CH3COOCa)+ > RDX∙∙∙CH3COOH > RDX∙∙∙CH2FCH2F. Thus, it can be inferred that for the RDX-based explosives, the stronger the binding energy, intermolecular interaction, and BDE are, the more insensitive the booster is, and thus, the larger energy has to be consumed to overcome the above three kinds of energies during the initiation process, leading to the smaller energy output and weaker response. However, it should be noted that it is mainly the density and the type of explosive that influence the depth of the dent produced on the steel witness block. The essence of the responses to shock waves is revealed by the reduced density gradient, atoms in molecules, and surface electrostatic potentials. HIGHLIGHTS: • Response of booster to shock wave was evaluated by shock wave partition loading test. • Responsivity to shock wave is explained by binding energy, intermolecular interaction, and BDE. • Shock initiation pressures were evaluated. • Essence of responses to shock wave is revealed by RDG, AIM and ESP.

7.
J Mol Model ; 27(12): 352, 2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34775520

RESUMEN

In order to obtain the more reliable impact sensitivities of CL-20 in the external electric fields, the calculation scheme for the sensitivities shown in the paper published in Journal of Molecular Modeling (entitled "Theoretical prediction of the trigger linkage, cage strain and explosive sensitivity of CL-20 in the external electric fields") was re-evaluated. We found that the model with the averages of the surface electrostatic potentials (ESPs) ([Formula: see text] and [Formula: see text]) may be more suitable for predicting the impact sensitivity of the cage-shaped CL-20 than those containing the variabilities of the surface ESPs ([Formula: see text] and [Formula: see text]) or the balance of charges (ν).

8.
J Mol Model ; 27(12): 343, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34739562

RESUMEN

In order to clarify the solvent effect on the thermal decomposition of explosive, the N-NO2 trigger-bond strengths and ring strains of RDX (cyclotrimethylenetrinitramine) in its H-bonded complexes with solvent molecules (i.e., tetrahydrofuran, acetone, toluene, and benzene), and the activation energies of the intermolecular hydrogen exchanges between the solvent molecules and C3H8O2N4 or CH4O2N2, as the model molecule of RDX, were investigated by the BHandHLYP, B3LYP, MP2(full), and M06-2X methods with the 6-311 + + G(2df,2p) basis set, accompanied by a comparison with the calculations by the integral equation formalism polarized continuum model. The solvent effects ignore the ring strain while strengthening the N-NO2 bond, leading to a possible decreased sensitivity, as is opposite to the experimental results. However, the activation energies are in the order of C3H8O2N4/CH4O2N2∙∙∙acetone < C3H8O2N4/CH4O2N2∙∙∙THF < C3H8O2N4/CH4O2N2∙∙∙toluene < C3H8O2N4/CH4O2N2∙∙∙benzene < C3H8O2N4/CH4O2N2, suggesting that the order of the critical explosion temperatures might be RDX∙∙∙acetone < RDX∙∙∙THF < RDX∙∙∙toluene < RDX∙∙∙benzene < RDX, as is roughly consistent with the experimental results. Therefore, the intermolecular hydrogen exchange with the HONO elimination is a possible mechanism of the solvent effect on the initial thermal decomposition of RDX. The solvent effect on the sensitivity is analyzed by the surface electrostatic potentials.

9.
J Mol Model ; 27(3): 85, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33598779

RESUMEN

In order to add safely external electric fields into the systems of the explosives with strong cage strain, the effects of the external electric fields on the strengths of trigger linkages, cage strain energies (CSEs), surface electrostatic potentials (ESPs), as well as impact and shock initiation sensitivities of CL-20 were investigated using the B3LYP and M06-2X methods with 6-311++G(2d,p) basis set. The results show that the changes of the strengths of the N-NO2 bonds are more notable than those of the bonds forming cage, and the changes involving the N-NO2 bonds attached to the five-membered ring are more significant than those attached to the six-membered ring. In most cases, the CSEs in the electric fields are stronger than those in no field. From the BDEs, the N-NO2 cleavage is the decomposition reaction pathway in detonation initiation. However, from the surface ESPs, the N-NO2 cleavage, C-N and C-C bond breaking may initiate the reactions. The global ESPs are more reasonable and reliable to estimate the impact sensitivities of the cage-shaped explosives. The changes of the bond lengths, Mulliken bond orders, nitro group charges and BDEs correlate well with the external electric field strengths. Interestingly, an abnormal result is found that the h50 values in the electric fields are larger than those in no field.

10.
J Mol Model ; 27(1): 4, 2021 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-33387061

RESUMEN

External electric field has been regarded as an effective tool to induce the variation of melting points of molecular crystals. The melting point of 2,4,6-trinitrotoluene (TNT) was calculated by molecular dynamics simulations under external electric field, and the electric field effects on the cooperativity effects of the ternary (TNT)3 were investigated at the M06-2X/6-311+G(d) and ωB97X-D/6-311++G(2d,p) levels. The results show that the melting points are decreased while the intermolecular interactions are strengthened under the external electric fields, suggesting that the intermolecular interactions cannot be used to explain the decreased melting points. A deduction based on the cooperativity effect is put forward: the enhanced cooperativity effects create the more serious defects in the melting process of the molecular crystal under the external electric fields, and simultaneously the local order parameters are decreased, leading to the decreased melting point. Thus, the cooperativity effect stemmed from the intermolecular C-H∙∙∙O H-bonding interactions controls the change of TNT melting point under the external electric field. Employing the information-theoretic approach (ITA), the origin of the cooperativity effects on the melting points of molecular crystal is revealed. This study opens a new way to challenge the problems involving the melting points for the molecular crystal under the external electric fields. However, note that above deduction needs to be improved; after all, the simple (TNT)3 model cannot replace the crystal structure.

11.
J Mol Model ; 26(12): 351, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33241433

RESUMEN

Controlling the selectivity of detonation initiation reaction to reduce the explosive sensitivity has been a Holy Grail in the field of energetic materials. The effects of the external electric fields on the homolysis of the N-NO2 bond and initiation reaction dynamics of NH2NO2∙∙∙H2O (i.e., intermolecular and 1,3-intramolecular hydrogen transfers) were investigated at the MP2/6-311++G(2d,p) and CCSD/6-311++G(2d,p)//MP2/6-311++G(2d,p) levels. The results show that the N-NO2 bond is not the "trigger linkage." The notable transiliences of the activation energy of the intermolecular hydrogen transfer are found with the field strength of - 0.012 a.u. along the -x-direction, leading to the conversion of the main reaction between the intermolecular and 1,3-intramolecular hydrogen transference. The activation energies of two kinds of the hydrogen transferences are increased under the external electric fields along the -y-direction. In particular, due to the conversion of the main reaction, the activation energies of the overall reaction are increased significantly along the -x-direction, leading to the significant reduced explosive sensitivities. Therefore, by controlling the field strengths and orientations between the "reaction axis" and external electric field along the y- and x-directions, the selectivity of the initiation reaction could be controlled and the explosive sensitivity could be reduced. Employing AIM (atoms in molecules) and surface electrostatic potentials, the origin of the control of reaction selectivity and the reduction of sensitivity is revealed. This work is of great significance to the improvement of the technology that the external electric fields are added safely into the energetic material system to enhance the explosive performance. Graphical abstract.

12.
J Mol Model ; 26(8): 203, 2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32648117

RESUMEN

In order to explore the essence of the hydration process of chitin or chitosan in the presence of cation, the cooperativity effects between the H-bonding and Na+···molecule interactions in the 1,4-dimethoxy-D-glucosamine (DMGA) complexes with H2O and Na+ were investigated at the B3LYP/6-311++G(d,p), M06-2X/6-311++G(2df,2p), and ωB97X-D/6-311++G(2df,2p) levels. The result shows that the complexes in which Na+ or H2O is bonded simultaneously to the -NH and -OH groups connected to the C3 atom of DMGA are the most stable. The cooperativity and anti-cooperativity effects occur in DMGA···H2O···DMGA and DMGA···Na+···H2O, while only the cooperativities are confirmed in DMGA···Na+···DMGA. The cooperativity occurs in the DMGA···Na+···H2O complexes without the hydration, while the anti-cooperativity occurs in those with the hydration. Furthermore, the cooperativity and anti-cooperativity in DMGA···Na+···H2O are far stronger than those in DMGA···Na+···DMGA or DMGA···H2O···DMGA. Therefore, a deduction is given that the cooperativity and anti-cooperativity effects play an important role in the hydration of chitin or chitosan in the presence of Na+. When only Na+ is linked with -OH and -NH groups of chitosan or chitin, due to the cooperativity effect, the hydration does not occur. When both Na+ and H2O are linked with -OH and -NH groups, the anti-cooperativities are dominant in controlling of the aggregation process of Na+, H2O, chitosan, and chitin, leading to the possible hydration. Atoms in molecules (AIM) analysis confirms the cooperativity and anti-cooperativity effects. Graphical abstract.

13.
J Mol Model ; 26(8): 219, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32728987

RESUMEN

In order to design high-energetic and insensitive explosives, the frontier orbital energy gaps, surface electrostatic potentials, nitro group charges, bond dissociation energies (BDEs) of the C-NO2 trigger bonds, and intermolecular interactions obtained by the M06-2X/6-311++G(2d,p) method were quantitatively correlated with the experimental drop hammer potential energies of 10 typical C-nitro explosives. The changes of several information-theoretic quantities (ITQs) in the density functional reactivity theory were discussed upon the formation of complexes. The BDEs in the explosives with six-membered ring are larger than those with five-membered ring. The frontier orbital energy gaps of the compounds with benzene ring are larger than those with N-heterocycle. The models involving the intermolecular interaction energies and the energy gaps could be used to predict the impact sensitivity of the C-nitro explosives, while those involving ΔSS, ΔIF, and ΔSGBP are invalid. With the more and more ITQs, the further studies are needed to seek for a good correlation between impact sensitivity measurements and ITQs for the energetic C-nitro compounds. The origin of sensitivity was revealed by the reduced density gradient method.

14.
J Mol Model ; 26(7): 190, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32613574

RESUMEN

In order to explore the nature of the hydration and swelling of superabsorbent resin, a theoretical investigation into the cooperativity effect of the H-bonding interactions in the hydrates of four model compounds that can be regarded as the units of hydroquinone formaldehyde resin (HFR) (i.e., O-hydroxymethyl-1,4-dihydroxybenzene, methylene di-O-hydroxymethyl-1,4-dihydroxybenzene, p-hydroxy hydroxymethyl calix[4]arene and p-hydroxy hydroxymethyl calix[5]arene) was carried out by many-body interaction and density functional reactivity theory. The HFR···H2O···H2O complexes, in which the H2O···H2O moieties are bound with both the hydroxyl groups of HFR, are the most stable. For the HFR(H2O)n clusters, the interaction energy per building block is increased as the number of the size n increases, indicating the cooperativity effect. Therefore, a deduction is given that the cooperativity effects of the H-bonding interactions play an important role in the process of the hydration and swelling of HFR, and the swelling behavior is mainly attributed to the cooperativity effects which arised from the interactions between the H2O molecules. The origin of the cooperativity effect was examined employing several information-theoretic quantities in the density functional reactivity theory. The degree of swelling of HFR was quantitated using a measure of volume. Graphical abstract.

15.
J Mol Model ; 25(12): 368, 2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31776690

RESUMEN

In order to introduce effectively the external electric fields into the explosive systems, the change trends of the strengths of trigger linkages, nitro group charges, and explosive sensitivities of 1,4-dinitroimidazole-N-oxide (1,4-DNIO) were investigated in the external electric fields at the B3LYP/6-311++G(2d,p) and M06-2X/aug-cc-pVTZ levels. The formulas for calculating the impact sensitivity by the surface electrostatic potentials were discussed. The results show that the N-NO2 bond is always the most likely trigger linkage, followed by N → O. This is the very valuable information for the researchers engaged in the molecular design or synthesis of the energetic explosives: The influences of the weak N → O coordination bond attached to the aromatic ring on the explosive sensitivity can be ignored when the N-NO2 bond exists. In the external electric fields along the positive directions of the N → O and C-NO2 bond axes as well as the negative direction of the N-NO2 bond axis, the dissociation energies (BDEs) of the N-NO2 bond and h50 values are increased, leading to the decreased impact sensitivities. The changes of the bond lengths, AIM electron density values, nitro group charges, BDEs of the trigger linkages, and impact sensitivities correlate well with the external electric field strengths, respectively. The effects of the fields on the electric spark sensitivities and shock initiation pressures are not obvious. The essence of the low BDEs of the N-NO2 bond was revealed by the resonance theory of the aromatic ring. Graphical abstract Changes of the impact sensitivities versus field strengths.

16.
J Mol Model ; 25(11): 330, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31659461

RESUMEN

In order to obtain an optimum scheme for separating the proton-transfer tautomer, a dynamic investigation into the effect of the external electric field on the proton-transfer tautomeric conversion in imidazole 3-oxide and 1-hydroxyimidazole was carried out at the M06-2X/6-311++G** and CCSD(T)/6-311++G(2d,p) level, accompanied by the analysis of the surface electrostatic potentials. The results show that, for both the forward reaction "imidazole 3-oxide → N-hydroxyimidazole free radical → 1-hydroxyimidazole" and its reverse reaction processes, the fields parallel to the N→O or N-OH bond axis affect the barrier heights and rate constants considerably more than those parallel to the other orientations. As the field strength is increased along the orientation from the O to N atom, the chemical equilibrium moves toward the direction for the formation of 1-hydroxyimidazole, while the amount of imidazole 3-oxide is increased with the increased field strength along the opposite orientation. In the fields along the orientation consistent with the dipole moment, the electrostatic potentials and their variances "abnormally" increase for the transition states with the N→O bond in comparison with those in no field (they decrease generally), which enhances the nucleophilicity of the coordination O atom and the electrophilicity of the activated H atom. The analyses of the AIM (atoms in molecules) and NICS (nucleus-independent chemical shift) were used to explain the above anomaly. Graphical Abstract Electrostatic potentials and their variances "abnormally" increase in the external electric field, which greatly affects tautomeric conversion.

17.
Phys Chem Chem Phys ; 21(22): 11871-11882, 2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31119251

RESUMEN

In order to reveal the nature of intercalative binding of drug to DNA, the cooperativity effect of the ππ interaction was investigated in the curcuminadenineH2O model system by applying a combined QM and QTAIM computational approach. The H-bonds between the electron-donating group of curcumin and adenine induce the formation of the ππ stacking. The introduction of H2O weakens the H-bonding and ππ interactions, leading to an anti-cooperativity effect, as is confirmed by the AIM (atoms in molecules) and RDG (reduced density gradient) analysis. Thus, it can be inferred that the anti-cooperative effect is the main driving force for the intercalative binding of drug to DNA bases, which is in agreement with many experimental phenomena. Therefore, the designed DNA-targeted intercalating drugs should possess not only hydrophobic moieties, but also strong electron-donating groups bound to the DNA bases with H-bonds, which can slow the variation rates of the strengths of the H-bonding and ππ interactions between drug and DNA bases in the anti-cooperative process, leading to the intercalation formation. The enthalpy change is the major factor driving the positive thermodynamic cooperativity.

18.
J Mol Model ; 24(10): 298, 2018 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-30267159

RESUMEN

In order to reveal the mechanism of drug action and design of DNA/RNA-targeted drugs containing aromatic rings, the cooperativity effects between the intermolecular π∙∙∙π and H-bonding interactions in curcumin(drug)∙∙∙cytosine(DNA/RNA base)∙∙∙H2O were investigated by the B3LYP-D3 and MP2(full) methods with the 6-311++G(2d,p) basis set. The π∙∙∙π interaction plays an important role in stabilizing the linear ternary complexes with the cooperativity effects, and the cyclic structures suffer the anticooperativity effects. The cooperativity or anticooperativity effects are notable, which could lead to a possible significant change in drug activity. The hydration is essentially the cooperativity or anticooperativity effect. These results were confirmed by the atoms in molecules (AIM), reduced density gradient (RDG), and surface electrostatic potentials analyses. The cyclic complexes are more stable, from which it can be deduced that the drug always links with the DNA/RNA base and H2O by the π∙∙∙π or H-bonding interactions, and only in this way can the drug activity be shown. Therefore, the designed DNA/RNA-targeted drugs should possess a certain number of hydrophilic groups in contact with the DNA/RNA base and H2O to reconcile drug activity by the cooperativity effect between the π∙∙∙π and H-bonding interactions, as is in agreement with many of the drugs in use. Graphical abstract RDG isosurface of ternary complex.


Asunto(s)
Curcumina/química , Citosina/química , Modelos Moleculares , Agua/química , Descubrimiento de Drogas , Enlace de Hidrógeno
19.
J Mol Model ; 24(1): 9, 2017 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-29230541

RESUMEN

Eutectic mixtures of 3,4-dinitropyrazole (DNP) and 1-methyl-3,4,5-trinitropyrazole (MTNP) were investigated by theoretical and experimental methods. The mass ratio of DNP and MTNP ranged from 0:100 to 100:0. Melting points of the mixtures were predicted through observing the inflection point of a specific volume vs. temperature in molecular dynamics (MD) simulation. The results are in good agreement with experimental results obtained from the differential scanning calorimeter (DSC) study. The binding energy of a 50/50 DNP/MTNP eutectic mixture is lower than those of other mixtures, in accordance with the common sense that the melting point of materials is linked to the strength of intermolecular interactions. There are definitely hydrogen bonds and dispersion interactions between DNP and MTNP based on the analyses of interaction energy, atom in molecules (AIM), and reduced density gradient (RDG). The eutectic mixture would be encouraged to be used in melt-cast explosives because of the favorable sensitivity to heat and impact, great detonation performances, acceptable vacuum stability and excellent compatibility with high explosives. Graphical abstract The eutectic mixture of DNP and MTNP were investigated through molecular dynamics (MD) simulation and quantum chemistry calculations. The predicted melting points of mixtures are in good agreement with the experimental data. The eutectic mixture shows good stability.

20.
J Mol Model ; 23(12): 353, 2017 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-29177847

RESUMEN

The effects of the molar ratio, temperature, and solvent on the formation of the cocrystal explosive DNP/CL-20 were investigated using molecular dynamics (MD) simulation. The cocrystal structure was predicted through Monte Carlo (MC) simulation and using first-principles methods. The results showed that the DNP/CL-20 cocrystal might be more stable in the molar ratio 1:1 near to 318 K, and the most probable cocrystal crystallizes in the triclinic crystal system with the space group P[Formula: see text]. Cocrystallization was more likely to occur in methanol and ethanol at 308 K as a result of solvent effects. The optimized structure and the reduced density gradient (RDG) of the DNP/CL-20 complex confirmed that the main driving forces for cocrystallization were a series of hydrogen bonds and van der Waals forces. Analyses of the trigger bonds, the charges on the nitro groups, the electrostatic surface potential (ESP), and the free space per molecule in the cocrystal lattice were carried out to further explore their influences on the sensitivity of CL-20. The results indicated that the DNP/CL-20 complex tended to be more stable and insensitive than pure CL-20. Moreover, an investigation of the detonation performance of the DNP/CL-20 cocrystal indicated that it possesses high power. Graphical abstract DNP/CL-20 cocrystal models with different molar ratios were investigated at different temperatures using molecular dynamics (MD) simulation methods. Binding energies and mechanical properties were probed to determine the stability and performance of each cocrystal model. Solvated DNP/CL-20 models were established by adding solvent molecules to the cocrystal surface. The binding energies of the models in various solvents were calculated in order to identify the most suitable solvent and temperature for preparing the cocrystal explosive DNP/CL-20.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...