Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Biol Med ; 162: 107092, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37263149

RESUMEN

Carotid artery intima-media thickness (CIMT) is an essential factor in signaling the risk of cardiovascular diseases, which is commonly evaluated using ultrasound imaging. However, automatic intima-media segmentation and thickness measurement are still challenging due to the boundary ambiguity of intima-media and inherent speckle noises in ultrasound images. In this work, we propose an end-to-end boundary-salience multi-branch network, BSMNet, to tackle the carotid intima-media identification from ultrasound images, where the prior shape knowledge and anatomical dependence are exploited using a parallel linear structure learning modules followed by a boundary refinement module. Moreover, we design a strip attention model to boost the thin strip region segmentation with shape priors, in which an anisotropic kernel shape captures long-range global relations and scrutinizes meaningful local salient contexts simultaneously. Extensive experimental results on an in-house carotid ultrasound (US) dataset demonstrate the promising performance of our method, which achieves about 0.02 improvement in Dice and HD95 than other state-of-the-art methods. Our method is promising in advancing the analysis of systemic arterial disease with ultrasound imaging.


Asunto(s)
Grosor Intima-Media Carotídeo , Ultrasonografía de las Arterias Carótidas , Arterias Carótidas/diagnóstico por imagen , Ultrasonografía/métodos
2.
Comput Biol Med ; 156: 106718, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36889027

RESUMEN

Cardiovascular diseases (CVD), as the leading cause of death in the world, poses a serious threat to human health. The segmentation of carotid Lumen-intima interface (LII) and Media-adventitia interface (MAI) is a prerequisite for measuring intima-media thickness (IMT), which is of great significance for early screening and prevention of CVD. Despite recent advances, existing methods still fail to incorporate task-related clinical domain knowledge and require complex post-processing steps to obtain fine contours of LII and MAI. In this paper, a nested attention-guided deep learning model (named NAG-Net) is proposed for accurate segmentation of LII and MAI. The NAG-Net consists of two nested sub-networks, the Intima-Media Region Segmentation Network (IMRSN) and the LII and MAI Segmentation Network (LII-MAISN). It innovatively incorporates task-related clinical domain knowledge through the visual attention map generated by IMRSN, enabling LII-MAISN to focus more on the clinician's visual focus region under the same task during segmentation. Moreover, the segmentation results can directly obtain fine contours of LII and MAI through simple refinement without complicated post-processing steps. To further improve the feature extraction ability of the model and reduce the impact of data scarcity, the strategy of transfer learning is also adopted to apply the pretrained weights of VGG-16. In addition, a channel attention-based encoder feature fusion block (EFFB-ATT) is specially designed to achieve efficient representation of useful features extracted by two parallel encoders in LII-MAISN. Extensive experimental results have demonstrated that our proposed NAG-Net outperformed other state-of-the-art methods and achieved the highest performance on all evaluation metrics.


Asunto(s)
Enfermedades Cardiovasculares , Grosor Intima-Media Carotídeo , Humanos , Adventicia/diagnóstico por imagen , Arterias Carótidas/diagnóstico por imagen , Túnica Íntima/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA