Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
J Am Chem Soc ; 146(22): 15130-15142, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38795041

RESUMEN

Investigating the structure-property correlation in porous materials is a fundamental and consistent focus in various scientific domains, especially within sorption research. Metal oxide clusters with capping ligands, characterized by intrinsic cavities formed through specific solid-state packing, demonstrate significant potential as versatile platforms for sorption investigations due to their precisely tunable atomic structures and inherent long-range order. This study presents a series of Ti8Ce2-oxo clusters with subtle variations in coordinated linkers and explores their sorption behavior. Notably, Ti8Ce2-BA (BA denotes benzoic acid) manifests a distinctive two-step profile during the CO2 adsorption, accompanied by a hysteresis loop. This observation marks a new instance within the metal oxide cluster field. Of intrigue, the presence of unsaturated Ce(IV) sites was found to be correlated with the stepped sorption property. Moreover, the introduction of an electrophilic fluorine atom, positioned ortho or para to the benzoic acid, facilitated precise control over gate pressure and stepped sorption quantities. Advanced in situ techniques systematically unraveled the underlying mechanism behind this unique sorption behavior. The findings elucidate that robust Lewis base-acid interactions are established between the CO2 molecules and Ce ions, consequently altering the conformation of coordinated linkers. Conversely, the F atoms primarily contribute to gate pressure variation by influencing the Lewis acidity of the Ce sites. This research advances the understanding in fabricating metal-oxo clusters with structural flexibility and provides profound insights into their host-guest interaction motifs. These insights hold substantial promise across diverse fields and offer valuable guidance for future adsorbent designs grounded in fundamental theories of structure-property relationships.

2.
ACS Appl Mater Interfaces ; 16(23): 30020-30030, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38814279

RESUMEN

Titanium-oxo clusters, with their robust structure and suitable optical and electronic properties, have been widely investigated as photocatalysts. Heterometallic Ti/M-oxo clusters provide additional tunability and functionality, which enable systematic structure-activity investigations to elucidate the reaction mechanisms and improve the catalyst design. Incorporating cerium into Ti-oxo clusters can provide additional redox (CeIV/CeIII) and oxygen harvesting ability, but to date, only a limited number of structurally defined titanium-cerium (Ti/Ce) clusters have been reported due to their synthetic challenges. Herein, we report the synthesis and photocatalytic properties of two structurally defined Ti/Ce-oxo clusters, Ti8Ce2(BA)16 and Ti9Ce4(BA)20, as well as a TiCe-BA cluster with a calculated formula of Ti20Ce9O36(BA)42. Photocatalytic study of these clusters demonstrates that the amount of Ce3+ species greatly impacts its photocatalytic oxidation performance, and their superior photocatalytic reactivity toward aerobic alcohol oxidation can be contributed to the synergistic effects of the multiple radical species generated upon light absorption. This work represents a significant milestone in the construction of stable Ti/Ce-oxo clusters, enriching the current library of known heterometallic Ti/M-oxo clusters, and providing a series of crystalline materials with great promise of photoluminescence and photovoltaic chemistry.

3.
Heliyon ; 10(9): e30190, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38707361

RESUMEN

Background: The severity of white matter hyperintensities (WMH) has been shown to be an independent predictor of poor stroke outcome, but the effect of sex on this correlation has not been investigated further. Therefore, the purpose of our study was to assess whether there was a sex difference between the severity of WMH and poor stroke outcome. Methods: This retrospective study included 449 patients with acute ischemic stroke (AIS) who received intravenous thrombolysis. WMH severity was graded based on the Fazekas scale. The association between WMH severity and stroke outcome was explored through multivariable regression analyses in men and women. Results: Among women, when dividing WMH severity into tertiles, T3 (Fazekas scale >3) had a 5.334 times higher risk for unfavorable outcomes than T1 (Fazekas scale <2) (p-trend = 0.026) in the adjusted model. In addition, moderate-severe WMH (Fazekas scale 3-6) had a 3.391 (1.151-9.991) times higher risk than none-mild WMH (Fazekas scale 0-2) (p = 0.027). Conclusions: The risk of unfavorable outcomes increased proportionally with the enlargement of the WMH severity in females, suggesting the sex-specific value of the WMH severity in optimizing the risk stratification of stroke.

4.
Int J Biol Macromol ; 254(Pt 1): 127499, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38287562

RESUMEN

Selective fractionation of hemicelluloses is of great significance for realizing high-value application of hemicelluloses and comprehensive utilization of lignocellulosic biomass. Tetramethylammonium hydroxide (TMAH) solvent has been confirmed as a promising solvent to selectively fractionate hemicelluloses from holocellulose. Herein, TMAH solvent was adopted to pretreat poplar thermomechanical pulp (PTMP) for the selective fractionation of hemicelluloses and enhancement of enzymatic hydrolysis performance of residues. The maximal hemicelluloses yield (65.0 %) and excellent cellulose retention rate (93.3 %) were achieved after pretreatment by the 25 wt% TMAH solvent, while the delignification was only 33.9 %. The hemicelluloses fractions could be selectively fractionated with high molecular weights (109,800-118,500 g/mol), the contents of Klason lignin in them were low (3.2-5.9 %), and the dominating structure of them was 4-O-methylglucurono-ß-D-xylan. Compared to the H2SO4 and NaOH methods, the hemicelluloses fractionated by TMAH method exhibited higher yields, more complete structures and higher molecular weights. Furthermore, the crystalline structure of cellulose practically remained stable, and the highest yield of enzymatic hydrolysis glucose was 57.5 %, which was 3.3 times of that of PTMP. The fractionation effectiveness of TMAH solvent was not significantly reduced after repeatedly recycling. This work demonstrated TMAH solvent could selectively fractionate hemicelluloses from PTMP and efficiently promote sustainable poplar-based biorefinery.


Asunto(s)
Lignina , Polisacáridos , Populus , Compuestos de Amonio Cuaternario , Peso Molecular , Lignina/química , Celulosa/química , Solventes , Hidrólisis , Biomasa
5.
J Am Chem Soc ; 146(2): 1294-1304, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38054299

RESUMEN

Achieving time-dependent phosphorescence color (TDPC) in organic materials is attractive but extremely challenging due to the nonradiative decay and modulation puzzle of triplet state. Herein, xylan, a hemicellulose waste from the paper mill, was used to construct carbonized polymer dots (CPDs) with clusterization-triggered room-temperature phosphorescence (RTP). CPDs were endowed with tuneable triplet energy levels by through-space conjugation of heteroatom groups, which could be confined in silica to simultaneously activate surface oxide-related low-energy and cross-linked core N-related high-energy emissive centers. Thus, the blue emissive center with a lifetime of 425.6 ms and green emissive center with a longer lifetime of 1506 ms coexisted in the confined CPDs; the former was the dominant contribution to RTP at first, and the latter became dominant over time, leading to a typical TDPC evolution with large color contrast from blue to blue-green and then to green. Meanwhile, the TDPC could remain unobstructed after the confined CPDs were soaked in water for more than a month. The CPDs were successfully applied in location and deformation imaging of hydrogel and advanced dynamic information encryption and anticounterfeiting. The work may shed new light on the design of TDPC materials and broaden the high-value use of paper-mill waste xylan.

6.
Small ; 20(13): e2309131, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37967324

RESUMEN

Sustainable long-lived room temperature phosphorescence (RTP) materials with color-tunable afterglows are attractive but rarely reported. Here, cellulose is reconstructed by directed redox to afford ample active hydroxyl groups and water-solubility; arylboronic acids with various π conjugations can be facilely anchored to reconstructed cellulose via click chemistry within 1 min in pure water, resulting in full-color tunable RTP cellulose. The rigid environment provided by the B─O covalent bonds and hydrogen bonds can stabilize the triplet excitons, thus the target cellulose displays outstanding RTP performances with the lifetime of 2.67 s, phosphorescence quantum yield of 9.37%, and absolute afterglow luminance of 348 mcd m-2. Furthermore, due to the formation of various emissive species, the smart RTP cellulose shows excitation- and time-dependent afterglows. Taking advantages of sustainability, ultralong lifetime, and full-color tunable afterglows, et al, the environmentally friendly RTP cellulose is successfully used for nontoxic afterglow inks, delay lighting, and afterglow display.

7.
Eur J Clin Pharmacol ; 80(1): 65-73, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37889297

RESUMEN

PURPOSE: Vancomycin (VAN) is widely used in neurosurgical patients for intracranial infections. We aimed to assess the incidence and risk factors for VAN-associated acute kidney injury (VA-AKI) in this population. METHODS: A case-control study of patients who treated with vancomycin in neurosurgery from January 2020 to December 2022 was conducted. Demographics and potential risk factors were collected. Multivariate logistic regression analyses were performed to identify risk factors for VA-AKI. AKI was defined according to the Kidney Disease Improving Global Outcomes Guidelines (KDIGO). RESULTS: A total of 345 patients participated with a VA-AKI incidence of 17.1% (59 cases). Among them, 15 patients had renal impairment (Stage 2 or higher), and 2 required dialysis. With univariate analysis and binary logistic regression analysis, we found that the use of mannitol (OR: 4.164; 95% CI: 1.606-10.792; P = 0.003), loop diuretics (OR: 3.371; 95% CI: 1.633-6.958; P = 0.001), three or more antimicrobial applications (OR: 3.623; 95% CI: 1.600-8.206; P = 0.002), diastolic blood pressure 80-89 mm Hg (OR: 5.532; 95% CI: 1.677-18.250; P = 0.005) and diastolic blood pressure ≥ 90 mm Hg (OR: 6.845; 95% CI: 1.518-30.866; P = 0.012) were independent risk factors for VA-AKI. In addition, according to the Youden Index, the trough concentration of vancomycin should not exceed 15.845 mg/L. CONCLUSION: The incidence of VA-AKI in neurosurgical patients was 17.1%. The concomitant use of mannitol and loop diuretics, along with higher diastolic blood pressure and the combined use of more than three antimicrobial agents, were associated with an increased risk of neurosurgical VA-AKI.


Asunto(s)
Lesión Renal Aguda , Vancomicina , Humanos , Vancomicina/efectos adversos , Antibacterianos/efectos adversos , Estudios Retrospectivos , Pacientes Internos , Estudios de Casos y Controles , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/epidemiología , Factores de Riesgo , Manitol
8.
Angiology ; : 33197231207264, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37843829

RESUMEN

The aim of this retrospective study was to determine the relationship between non-traditional lipid parameters and epicardial adipose tissue (EAT). A total of 770 patients with coronary computed tomography angiography examinations were included. The non-traditional lipid parameters included the atherogenic index of plasma (AIP), the atherogenic coefficient (AC), monocyte to high-density lipoprotein cholesterol (HDL-C) ratio (MHR), and lipoprotein combined index (LCI). To investigate the association between non-conventional lipid markers and the EAT-volume (EAT-v), a univariate and multivariate analyses were conducted. The receiver operating characteristic (ROC) analysis was used to compare the predictive ability among the four non-traditional lipid parameters. In the univariate analysis, we identified factors that might have effects on EAT-v (all P<.05) and adjusted for these in the multivariate analysis. We found that except for MHR, other non-traditional lipid parameters were still associated with high EAT-v after adjustment (all P<.05). In the ROC analysis, the area under the curve (AUC) of AIP was greater than that of other non-traditional lipid parameters and lipid profiles. There was an association between both non-traditional lipid parameters and EAT-v. After adjustment, the AIP remained an independent predictor of EAT-v and it outperformed other non-traditional lipid parameters.

9.
Phys Chem Chem Phys ; 25(41): 28078-28085, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37622227

RESUMEN

Solvent-controlled extraction and precipitation are the most fundamental methods for obtaining hemicellulose from lignocellulosic biomass and purification processes. However, the dissolution and precipitation mechanisms involved have scarcely been mentioned. In this study, the molecular scale behavior of xylan-type hemicellulose during solvent-controlled extraction and precipitation is investigated using molecular dynamics (MD) simulations and density functional theory (DFT) calculations. To bring the model closer to the real extracted xylan, a high degree of polymerization (DP100) of xylan is established, and hemicelluloses with low DP (DP15 and DP50) are also investigated. Four phenomena are explained at the molecular level, including the influence of the polymerization degree and side chain on the solubility of xylan in water, the improvement of the xylan's solubility in NaOH, the precipitation of xylan in ethanol, and the acetyl group preservation of xylan in DMSO. This study contributes to an increased understanding of the dissolution and precipitation mechanisms of hemicellulose and provides a resource for the simulation of high DP hemicellulose, which gives a theoretical basis for the efficient extraction of high-purity hemicellulose as well as economic biorefining.

10.
Adv Mater ; 35(47): e2305126, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37639319

RESUMEN

The large-scale preparation of sustainable room-temperature phosphorescence (RTP) materials, particularly those with stimulus-response properties, is attractive but remains challenging. This study develops a facile heterogeneous B─O covalent bonding strategy to anchor arylboronic acid chromophores to cellulose chains using pure water as a solvent, resulting in multicolor RTP cellulose. The rigid environment provided by the B─O covalent bonds and hydrogen bonds promotes the triplet population and suppresses quenching, leading to an excellent lifetime of 1.42 s for the target RTP cellulose. By increasing the degree of chromophore conjugation, the afterglow colors can be tuned from blue to green and then to red. Motivated by this finding, a papermaking production line is built to convert paper pulp reacted with an arylboronic acid additive into multicolor RTP paper on a large scale. Furthermore, the RTP paper is sensitive to water because of the destruction of hydrogen bonds, and the stimuli-response can be repeated in response to water/heat stimuli. The RTP paper can be folded into 3D afterglow origami handicrafts and anti-counterfeiting packing boxes or used for stimulus-responsive information encryption. This success paves the way for the development of large-scale, eco-friendly, and practical stimuli-responsive RTP materials.

11.
Sensors (Basel) ; 23(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37299923

RESUMEN

Legged robots can travel through complex scenes via dynamic foothold adaptation. However, it remains a challenging task to efficiently utilize the dynamics of robots in cluttered environments and to achieve efficient navigation. We present a novel hierarchical vision navigation system combining foothold adaptation policy with locomotion control of the quadruped robots. The high-level policy trains an end-to-end navigation policy, generating an optimal path to approach the target with obstacle avoidance. Meanwhile, the low-level policy trains the foothold adaptation network through auto-annotated supervised learning to adjust the locomotion controller and to provide more feasible foot placement. Extensive experiments in both simulation and the real world show that the system achieves efficient navigation against challenges in dynamic and cluttered environments without prior information.


Asunto(s)
Robótica , Visión Ocular , Locomoción , Simulación por Computador , Pie
12.
Small ; 19(35): e2300865, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37162453

RESUMEN

Adhesive gels derived from biobased sustainable materials have extremely broad application prospects, such as in flexible smart materials and biomedicine fields. Combining high toughness and strong, persisting repeatable adhesion has always been a daunting challenge for adhesive gels. However, bulk gels based on polysaccharides as the most abundant bio-based compounds usually possess a high toughness but weak interfacial adhesion due to the strong hydration potential. Herein, a novel kind of highly tough microgel membranes with rough surfaces is fabricated using loosely chemically cross-linked dihydroxypropyl cellulose (cDHPC) microgels (average size = 1.25 ± 0.03 µm). Such microgel membranes exhibit strong, instant, and persisting adhesion to various substrates with different surface roughness. Slight chemical cross-linking and multiple physical interactions within microgels and resulting microgel membranes lead to high tensile strength and toughness of 0.23 ± 0.03 MPa and 73.8 ± 9.3 KJ m-3 , respectively. The maximum adhesive strength and debonding work exceed 320 ± 0.50 KPa and 160.97 ± 0.20 J m-2 , respectively. After five cycles (re-lap after detaching), the adhesive strength still remains above 200 KPa. Their adhesive properties outperform most bio-based adhesive gels and even petroleum-based gels, which are based on synergistic molecular and microscaled topological interactions.

13.
Carbohydr Polym ; 312: 120794, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37059534

RESUMEN

Separating films with both high efficiency and large flux are desperately needed to meet the rising demand for the treatment of oily wastewater, while traditional oil/water separation papers with high separation efficiency usually suffered from low flux due to the unsuitable size of filtration pores. Herein, we report a bio-based porous, superhydrophobic, and antimicrobial hybrid cellulose paper with tunable porous structures for high flux oil/water separation. The size of pores in the hybrid paper can be tuned by both physical supports provided by the chitosan fibers and the chemical shielding supplied by the hydrophobic modification. The hybrid paper with increased porosity (20.73 µm; 35.15 %) and excellent antibacterial properties can efficiently separate a wide range of oil/water mixtures, solely by gravity, with outstanding flux (maximum of 23,692.69 L m-2 h-1), tiny oil interception, and high efficiency of over 99 %. This work provides new sights in the development of durable and low-cost functional papers for rapid and efficient oil/water separation.

14.
Bioresour Technol ; 376: 128887, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36925080

RESUMEN

Developing an environmentally friendly and efficient pretreatment to utilize wheat straw is essential to a sustainable future. An acid biphasic system with 2-methyltetrahydrofuran (2-MeTHF) organic solvent and dilute p-toluenesulfonic acid (p-TsOH) were employed for the simultaneous fractionation of three components. Results showed that the biphasic system had excellent cellulose protection and high removal of hemicellulose and lignin. In detail, Under the optimal conditions (0.1 M p-TsOH, 2-MeTHF: H2O = 1:1 (v:v), 140 °C, 3 h), mostly cellulose retained in the residues (95.69%), 57.18% of lignin was removed and high yield of hemicellulose-based C5 sugars was achieved (77.49%). In the further process of dehydration of pre-hydrolysate dichloromethane (DCM) as an organic phase, the yield of furfural was 80.07% (170 °C-80 min). The saccharification of residue reached 95.82%. p-TsOH/2-MeTHF/H2O pretreatment was desirable for high selectivity fractionation. Important chemicals for bioenergy including furfural, monosaccharides and lignin are obtained.


Asunto(s)
Celulosa , Lignina , Lignina/química , Triticum/química , Biomasa , Furaldehído , Hidrólisis
15.
Sci Total Environ ; 864: 160937, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36528106

RESUMEN

Radionuclides, such as 210Pb, 137Cs and 239,240Pu, have been widely used for dating recent sediments in terrestrial and marine environments, while 129I, as an important artificial radionuclide in the environment, is also a potential tracer for sediment dating and environmental process studies. However, they were not always successfully applied to sediment dating because of their different sources, half-lives, environmental behaviour and measurement techniques. The dating applicability of these nuclides in a sedimentary environment with rapid accumulation on land was investigated for sinkhole sediment from the southern Chinese Loess Plateau. Our results showed that 210Pb and 137Cs could not be adequately used for dating the sediments due to the difficulties in accurately measuring 137Cs and excess 210Pb (210Pbex) signals caused by the dilution effect of rapid accumulation. 129I is not an ideal dating tracer because of its multisource feature causing no remarkable peak value in the sediment cores. The depth distribution of 239,240Pu in the sediment core showed a single peak corresponding to its maximum fallout in 1963 from the atmospheric nuclear weapons test, suggesting that Pu isotopes have significant advantages in dating recent sediments. The sensitive inductively coupled plasma-mass spectrometry (ICP-MS) measurement technique enables the determination of very low levels of 239Pu and 240Pu and makes 239,240Pu a suitable tracer for dating the rapidly accumulated sediment. Based on the 239,240Pu mass balance equation estimation and field observations, we proposed the water-eroded input from soil surrounding the sinkhole as another vital source of the sediments in addition to the aeolian contribution.

16.
J Comput Aided Mol Des ; 37(1): 39-51, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36427107

RESUMEN

Cellulose/collagen composites have been widely used in biomedicine and tissue engineering. Interfacial interactions are crucial in determining the final properties of cellulose/collagen composite. Molecular dynamics simulations were carried out to gain insights into the interactions between cellulose and collagen. It has been found that the structure of collagen remained intact during adsorption. The results derived from umbrella sampling showed that (110) and ([Formula: see text]) faces exhibited the strongest affinity with collagen (100) face came the second and (010) the last, which could be attributed to the surface roughness and hydrogen-bonding linkers involved water molecules. Cellulose planes with flat surfaces and the capability to form hydrogen-bonding linkers produce stronger affinity with collagen. The occupancy of hydrogen bonds formed between cellulose and collagen was low and not significantly contributive to the binding affinity. These findings provided insights into the interactions between cellulose and collagen at the molecular level, which may guide the design and fabrication of cellulose/collagen composites.


Asunto(s)
Celulosa , Simulación de Dinámica Molecular , Celulosa/química , Colágeno , Enlace de Hidrógeno , Termodinámica , Hidrógeno
17.
Int J Biol Macromol ; 220: 1084-1094, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35985397

RESUMEN

Hydrogels with fascinating adhesion have been demonstrated great potential in various applications. However, most hydrogels lose their adhesion in wet or underwater environments due to the influence of interfacial water. Inspired by mussel, an underwater adhesive hydrogel was facilely fabricated by introducing electrostatic interactions, which consisted of poly (acrylic acid) (PAA), quaternized xylan (QAX) and tannic acid (TA). In this hydrogel, -COO- from PAA, -N+(CH3)3 from QAX and catechol group from TA resembled amino acids with negative and positive charges and 3,4-dihydroxyphenylalanine units in mussel, which endowed the hydrogels with great underwater adhesion through multiple interactions. Notably, acrylic acid (AA) played a key role in the dispersion of the system. QAX, a biomass derived from plants with excellent properties, worked with PAA to construct hydrogel networks. The resultant hydrogels exhibited excellent mechanical properties including remarkable stretchability (>4000 %) and compressibility. Moreover, the hydrogels had superior UV-blocking (~99.96 %), and showed good adhesion both in air and underwater. The hydrogels can be exploited as a wearable sensor to monitor human motions and even subtle motions, which have the potential to be explored in human health monitoring.


Asunto(s)
Bivalvos , Hidrogeles , Acrilatos , Adhesivos/química , Animales , Bivalvos/química , Catecoles/química , Dihidroxifenilalanina/química , Humanos , Hidrogeles/química , Taninos/metabolismo , Agua/metabolismo , Xilanos/metabolismo
18.
Molecules ; 27(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35807412

RESUMEN

In this study, densified wood was prepared by hot pressing after partial lignin and hemicellulose were removed through alkaline solution cooking. The tensile strength and elastic modulus of densified wood were improved up to 398.5 MPa and 22.5 GPa as compared with the original wood, and the characterization of its supramolecular structures showed that the crystal plane spacing of the densified wood decreased, the crystallite size increased, and the maximum crystallinity (CI) of cellulose increased by 15.05%; outstandingly, the content of O(6)H⋯O(3') intermolecular H-bonds increased by approximately one-fold at most. It was found that the intermolecular H-bond content was significantly positively correlated with the tensile strength and elastic modulus, and accordingly, their Pearson correlation coefficients were 0.952 (p < 0.01) and 0.822 (p < 0.05), respectively. This work provides a supramolecular explanation for the enhancement of tensile strength of densified wood.


Asunto(s)
Lignina , Madera , Celulosa/química , Módulo de Elasticidad , Lignina/química , Resistencia a la Tracción , Madera/química
19.
Food Funct ; 13(15): 8274-8282, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35833889

RESUMEN

Background: Whole grains present distinguished benefits to a handful of metabolic syndromes (MetS). However, the preventive effects of germinated brown rice (GBR), a new type of brown rice, on patients with type 2 diabetes (T2DM) are rarely reported. Objectives: To investigate whether replacing 100 g refined white rice (RWR) with equal GBR per day is effective in T2DM and its underlying mechanisms. Methods: Ninety-nine qualified T2DM patients (64.58 ± 5.06 years old) were recruited. All patients were randomly divided into GBR group (100 g d-1 GBR for 12 weeks) and control group (keep the regular diet). Food frequency questionnaires, and fresh stool and serum samples were collected before and after the intervention, followed by various measurements. Results: Fasting blood glucose was obviously decreased after GBR intervention with an effective rate of 62%. Glycated hemoglobin (HbA1c) levels were decreased in the GBR group with no significance. In the GBR group, the abundance of beneficial bacteria in feces was increased, while harmful bacteria were decreased. The percentage of Bacteroides (57.2%) was largely increased. In addition, three types of short-chain fatty acids (SCFAs) including acetic acid, propanoic acid, and butyric acid were increased significantly by GBR (p < 0.05). The secretion of GLP and PYY in serum, two kinds of gastrointestinal hormones downstream of SCFAs, was stimulated by GBR (p < 0.01). Meanwhile, GBR intervention could balance the ratio of Treg/Th17 immune cells in PBMCs and reduce the levels of inflammatory factors including IL-6, IL-8, and LPS in serum, which improved the permeability of intestinal mucosa. Conclusions: GBR (100 g d-1 for 12 weeks) has positive improvement in the fasting blood glucose for T2DM patients, which attributed to the recovery of intestinal homeostasis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hormonas Gastrointestinales , Oryza , Anciano , Glucemia , Homeostasis , Humanos , Persona de Mediana Edad , Granos Enteros
20.
Carbohydr Polym ; 291: 119479, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35698320

RESUMEN

The increasing environmental burden generated by disposable plastic wastes makes the development of sustainable substitute materials an emergent task. As one of the most abundant bioresources, chitosan (CS) has been considered as a potential candidate for plastic substitution. Conventionally, CS-based materials are fabricated through a solution-processing procedure due to the high crystallinity of CS. Herein, we designed a CS-based material via integrating CS into the network of polyimine (PI), which shows thermomechanical processability similar to plastics. Strong interactions were achieved through dynamic imine bond and hydrogen bond and thus formed a thermo-processable dynamic composite network. These CS-based plastic substitutes exhibit exceptional mechanical performances, excellent thermal/chemical stability, and a series of self-adaptiveness, including re-healing, reprocessing and multi-layer laminating. Notably, CPs can be easily degraded and 100% recycled for the production of next-generation materials. This work provides an alternative route to produce green and sustainable biomass materials as a plastic substitute.


Asunto(s)
Quitosano , Plásticos , Biomasa , Quitosano/química , Enlace de Hidrógeno , Reciclaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...