Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 54(18): 5619-23, 2015 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-26193003

RESUMEN

In this paper, a compact slow-light microfiber coil resonator (MCR) is fabricated and the slow-light properties of it are analyzed and tested. Based on coupled-wave theory, a theoretical model for describing the slow-light propagation in the MCR is established. Experimentally, the MCR slow-light element is fabricated and its relative slow-light time delay is measured. The group velocity of the light pulse in the MCR slow-light element can be reduced to about 0.47c (c is the speed of light in vacuum) and the shape of the light pulse passing through the MCR is well preserved.

2.
Appl Opt ; 52(21): 5297-302, 2013 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-23872779

RESUMEN

A new kind of polymer porous fiber with elliptical air-holes is designed for obtaining high birefringence in the terahertz (THz) frequency range in this paper. Using the finite element method, the properties of this kind of fiber are simulated in detail including the single-mode propagation condition, the birefringence, and the loss. Theoretical results indicate that the single-mode THz wave in the frequency range from 0.73 to 1.22 THz can be guided in the fiber; the birefringence can be enhanced by rotating the major axis of the elliptical air-hole and there exists an optimal rotating angle at 30°. At this optimal angle a birefringence as high as 0.0445 can be obtained in a wide frequency range. Low-loss THz guidance can be achieved owing to the effective reduction of the material absorption in such a porous fiber. This research is useful for polarization-maintaining THz-wave guidance.


Asunto(s)
Polímeros/química , Espectroscopía de Terahertz/instrumentación , Absorción , Biotecnología/instrumentación , Birrefringencia , Análisis de Elementos Finitos , Modelos Teóricos , Óptica y Fotónica , Porosidad , Temperatura , Espectroscopía de Terahertz/métodos
3.
Appl Opt ; 50(31): G98-G103, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22086056

RESUMEN

A dispersion tailoring scheme for obtaining slow light in a silicon-on-insulator W1-type photonic crystal waveguide, novel to our knowledge, is proposed in this paper. It is shown that, by simply shifting the first two rows of air holes adjacent to the waveguide to specific directions, slow light with large group-index, wideband, and low group-velocity dispersion can be realized. Defining a criterion of restricting the group-index variation within a ±0.8% range as a flattened region, we obtain the ultraflat slow light with bandwidths over 5.0, 4.0, 2.5, and 1.0 nm when keeping the group index at 38.0, 48.8, 65.2, and 100.4, respectively. Numerical simulations are performed utilizing the three-dimensional (3D) plane-wave expansion method and the 3D finite-difference time-domain method.

4.
Appl Opt ; 49(16): 3208-14, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20517392

RESUMEN

We have proposed a novel type of photonic crystal fiber (PCF) with low dispersion and high nonlinearity for four-wave mixing. This type of fiber is composed of a solid silica core and a cladding with a squeezed hexagonal lattice elliptical airhole along the fiber length. Its dispersion and nonlinearity coefficient are investigated simultaneously by using the full vectorial finite element method. Numerical results show that the proposed highly nonlinear low-dispersion fiber has a total dispersion as low as +/-2.5 ps nm(-1) km(-1) over an ultrabroad wavelength range from 1.43 to 1.8 microm, and the corresponding nonlinearity coefficient and birefringence are about 150 W(-1) km(-1) and 2.5x10(-3) at 1.55 microm, respectively. The proposed PCF with low ultraflattened dispersion, high nonlinearity, and high birefringence can have important application in four-wave mixing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...