Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33758097

RESUMEN

Most glioblastomas (GBMs) achieve cellular immortality by acquiring a mutation in the telomerase reverse transcriptase (TERT) promoter. TERT promoter mutations create a binding site for a GA binding protein (GABP) transcription factor complex, whose assembly at the promoter is associated with TERT reactivation and telomere maintenance. Here, we demonstrate increased binding of a specific GABPB1L-isoform-containing complex to the mutant TERT promoter. Furthermore, we find that TERT promoter mutant GBM cells, unlike wild-type cells, exhibit a critical near-term dependence on GABPB1L for proliferation, notably also posttumor establishment in vivo. Up-regulation of the protein paralogue GABPB2, which is normally expressed at very low levels, can rescue this dependence. More importantly, when combined with frontline temozolomide (TMZ) chemotherapy, inducible GABPB1L knockdown and the associated TERT reduction led to an impaired DNA damage response that resulted in profoundly reduced growth of intracranial GBM tumors. Together, these findings provide insights into the mechanism of cancer-specific TERT regulation, uncover rapid effects of GABPB1L-mediated TERT suppression in GBM maintenance, and establish GABPB1L inhibition in combination with chemotherapy as a therapeutic strategy for TERT promoter mutant GBM.


Asunto(s)
Neoplasias Encefálicas/genética , Factor de Transcripción de la Proteína de Unión a GA/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Telomerasa/genética , Animales , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Astrocitos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Daño del ADN/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , Factor de Transcripción de la Proteína de Unión a GA/genética , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Células HEK293 , Humanos , Ratones , Mutación , Regiones Promotoras Genéticas/genética , Isoformas de Proteínas/metabolismo , Temozolomida/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Cell ; 176(1-2): 254-267.e16, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30633905

RESUMEN

The ability to engineer natural proteins is pivotal to a future, pragmatic biology. CRISPR proteins have revolutionized genome modification, yet the CRISPR-Cas9 scaffold is not ideal for fusions or activation by cellular triggers. Here, we show that a topological rearrangement of Cas9 using circular permutation provides an advanced platform for RNA-guided genome modification and protection. Through systematic interrogation, we find that protein termini can be positioned adjacent to bound DNA, offering a straightforward mechanism for strategically fusing functional domains. Additionally, circular permutation enabled protease-sensing Cas9s (ProCas9s), a unique class of single-molecule effectors possessing programmable inputs and outputs. ProCas9s can sense a wide range of proteases, and we demonstrate that ProCas9 can orchestrate a cellular response to pathogen-associated protease activity. Together, these results provide a toolkit of safer and more efficient genome-modifying enzymes and molecular recorders for the advancement of precision genome engineering in research, agriculture, and biomedicine.


Asunto(s)
Sistemas CRISPR-Cas/fisiología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/fisiología , Edición Génica/métodos , Proteínas Asociadas a CRISPR/química , ADN/química , Genoma , Modelos Moleculares , ARN/química , ARN Guía de Kinetoplastida/genética
3.
Science ; 362(6411): 236-239, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30190307

RESUMEN

Cas12a (Cpf1) is a CRISPR-associated nuclease with broad utility for synthetic genome engineering, agricultural genomics, and biomedical applications. Although bacteria harboring CRISPR-Cas9 or CRISPR-Cas3 adaptive immune systems sometimes acquire mobile genetic elements encoding anti-CRISPR proteins that inhibit Cas9, Cas3, or the DNA-binding Cascade complex, no such inhibitors have been found for CRISPR-Cas12a. Here we use a comprehensive bioinformatic and experimental screening approach to identify three different inhibitors that block or diminish CRISPR-Cas12a-mediated genome editing in human cells. We also find a widespread connection between CRISPR self-targeting and inhibitor prevalence in prokaryotic genomes, suggesting a straightforward path to the discovery of many more anti-CRISPRs from the microbial world.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Sistemas CRISPR-Cas , Endonucleasas/antagonistas & inhibidores , Edición Génica , Moraxella/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular , Biología Computacional/métodos , División del ADN , Genoma Bacteriano , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA