Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 35(15): e2211237, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36662770

RESUMEN

Hydrogels with wet adhesion are promising interfacial adhesive materials; however, their adhesion in water, oil, or organic solvents remains a major challenge. To address this, a pressure-sensitive P(AAm-co-C18 )/PTA-Fe hydrogel is fabricated, which exhibits robust adhesion to various substrates in both aqueous solutions and oil environments. It is demonstrated that the key to wet adhesion under liquid conditions is the removal of the interfacial liquid, which can be achieved through rational molecular composition regulation. By complexing with hydrophilic polymer networks, phosphotungstic acid (PTA) is introduced into the hydrogel network as a physical cross-linker and anchor point to improve the cohesion strength and drive the migration of polymer chains. The migration and rearrangement of hydrophilic and hydrophobic polymer chains on the hydrogel surface are induced by the electrostatic interactions of Fe3+ , which create a surface with interfacial water- and oil-removing properties. By co-regulating the hydrophilic and hydrophobic polymer chains, the P(AAm-co-C18 )/PTA-Fe hydrogel is able to act as a pressure-sensitive adhesive under water and oils with adhesion strength of 92.6 and 90.0 kPa, respectively. It is anticipated that this regulation strategy for polymer chains will promote the development of wet adhesion hydrogels, which can have a wide range of applications.

2.
ACS Omega ; 7(35): 31081-31097, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36092603

RESUMEN

The poor biotribological properties and bioinertness of Ti6Al4V have restricted its application in biomedical materials. In this study, microgrooves of different widths were prepared on the surface of a Ti6Al4V alloy by laser treatment. The tribological properties under dry lubrication and simulated body fluid (SBF) lubrication conditions, the electrochemical corrosion properties in SBF solution, and the bone marrow mesenchymal stem cell (BMSC) behavior on the surfaces were systematically tested. The corresponding mechanisms were discussed. The results showed that Ti6Al4V with a microgroove width of 45 µm (Ti64-45) exhibited excellent wear resistance with decreasing wear rates of 89.79 and 85.43% under dry friction and SBF lubrication compared to the Ti64 sample, which might be due to the increase of surface microhardness. Moreover, the excellent anticorrosion performance of Ti64-45 was attributed to the grain refinement on the titanium alloy surface with a lower volume fraction ratio of ß phase to α phase. In addition, the microgrooves with a width of 45 µm are more conducive to BMSC proliferation and adhesion, related to promoting cell signal transduction due to cell extrusion. These studies imply that the microgroove structures are potential for application in the medical field.

4.
J Colloid Interface Sci ; 608(Pt 1): 186-192, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34626965

RESUMEN

HYPOTHESIS: Transparent superhydrophilic coatings are very promising in various scenarios. Appropriate fabrication of colloid coatings with superhydrophilicity both in air and under oil would enlarge their application potential in anti-oil fouling and facilitate anti-fogging of transparent surfaces. EXPERIMENTS: The Barite colloid was obtained from a one-step precipitation method and was transferred onto glasses to prepare transparent coatings with different thicknesses simply by dip-coating. Then, the impact of thickness on wettability and property was studied through the investigation of wettability in various phase, anti-crude oil fouling performance and anti-fogging ability. FINDINGS: Similar surface morphology and roughness of these coatings were achieved and all the coated surfaces showed ultra-hydrophilicity both in air and under oil. Moreover, the hydrophilicity in air and under oil was found to deteriorate with the decrease of coatings' thickness and dual superhydrophilicity could be achieved on thick coatings. More importantly, excellent anti-crude oil fouling property and durable anti-fogging ability were realized on these transparent coatings with dual superhydrophilicity.

5.
ACS Appl Mater Interfaces ; 13(23): 27674-27686, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34086434

RESUMEN

Viscous oil adherence onto solid surfaces is ubiquitous and has caused intractable fouling problems, impairing the function of solid surfaces in various areas such as optics and separation membranes. Materials with superhydrophilicity and underwater superoleophobicity are very effective in elimination of oil fouling. However, most of them cannot dewet viscous oils and may malfunction without prehydration treatment. Herein, we report a facile and environmental strategy to prepare barium sulfate (BaSO4) nanocoating to dewet viscous oils on dry surfaces. Abundant surface polar groups (surface hydroxyl) on BaSO4 nanocoating enhance both hydrophilicity after oil fouling (underoil water contact angle <10°) and underwater superoleophobicity (underwater-oil contact angle >155°) and then facilitate oil dewetting ability. Different oils with viscosity up to 900 mPa·s can be easily eliminated after immersion into water. The results and force analysis also demonstrate that small surface roughness and ultrahydrophilicity under oil are beneficial to achieve oil dewetting property on dry surfaces. Furthermore, BaSO4 nanocoating displays excellent mechanical, thermal and chemical stability and can maintain oil repellency through various harsh conditions. Outstanding antioil fouling ability also enables the fabric coated by BaSO4 nanocoating to separate crude oil/water with flux higher than 28 000 Lm2-h-1 and separation efficiency larger than 99.9% and maintain effective separation performance even after 100 times of separation. Thus, the robust superhydrophilic BaSO4 nanocoating is potential in oil dewetting and waste oil remediation.

6.
J Hazard Mater ; 407: 124374, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33243637

RESUMEN

Supra-wetting materials, especially superhydrophobic absorption materials, as an emerging advanced oil-water separation material have attracted extensive concern in the treatment of oil spillage and industrial oily wastewater. However, it is still a challenge to fabricate robust and multifunctional superhydrophobic materials for the multitasking oil-water separation and fast clean-up of the viscous crude oil by an environment-friendly and scalable method. Herein, a solid-solid phase ball-milling strategy without chemical reagent-free modification was proposed to construct heterogeneous superhydrophobic composites by using waste soot as the solid-phase superhydrophobic modifier. A series of covalent bond restricted soot-graphene (S-GN) or soot-Fe3O4 (S-Fe3O4) composite materials with a peculiar micro-nano structure are prepared. Through "glue+superhydrophobic particles" method, the prepared soot-based composite particles are facilely loaded on the porous skeleton of the sponge to obtain multifunctional superhydrophobic adsorbents. The reported superhydrophobic adsorbents exhibited robust chemical and mechanical stability, convenient magnetic collection, the high oil absorption capacity of 60-142 g g-1, durable recyclability (>250 cycles), efficient separation efficiency (>99.5%) and outstanding self-heated performance, which enable them to be competent for oil-water separation in multitasking and complex environment (floating oils, continuous oil collection, oil-in-water emulsion, and viscous oil-spills).

7.
Appl Opt ; 59(28): 8964-8969, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33104584

RESUMEN

Measuring the spectral response (SR) of large-area (>100cm2) luminescent solar concentrators (LSCs) has proven difficult because common laboratory photovoltaic (PV) instruments that offer monochromatic incidence measure devices with limited sizes (typically <50cm2). This report addresses this issue through a method called regional measurements. In this method, large-area LSCs are configured to small surface and edge regions, which are sequentially illuminated and measured, respectively. The measured SRs of large-area LSCs are consistent with those from the conventional method and the Monte Carlo ray-tracing simulation. This method is also applied to analyze scattering effects in the LSCs, showing the relationships of the scattering-induced power gain and power loss to the surface root-mean-squared roughness (Rq) of the devices. The results explain why the PV performance of the LSCs can be improved through proper surface scattering treatment.

8.
Polymers (Basel) ; 12(8)2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32708037

RESUMEN

With the development of fine surgery and desire for low-injury methods, the frictional properties of surgical sutures are one of the crucial factors that can cause damage to tissue, especially for some fragile and sensitive human tissues such as the eyeball. In this study, dopamine hydrochloride and graphene oxide were used as external application agents to prepare a biological coating for the surface of multifilament surgical sutures. The effects of this biocoating on the surface morphology, chemical properties, mechanical properties, and tribological properties of surgical sutures were studied. The friction force and the coefficient of friction of surgical sutures penetrating through a skin substitute were evaluated using a penetration friction apparatus and a linear elastic model. The tribological mechanism of the coating on the multifilament surgical sutures was investigated according to the results of the tribological test. The results showed that there were uniform dopamine and graphene oxide films on the surface of the surgical sutures, and that the fracture strength and yield stress of the coated sutures both increased. The surface wettability of the surgical sutures was improved after the coating treatment. The friction force and the coefficient of friction of the multifilament surgical sutures with the dopamine hydrochloride and graphene oxide coating changed little compared to those of the untreated multifilament surgical sutures.

9.
J Mech Behav Biomed Mater ; 109: 103823, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32543395

RESUMEN

The grain structure and surface morphology of bio-implants act as a pivotal part in altering cell behavior. Titanium alloy bone screws, as common implants, are prone to screws loosening and complications threat in the physiological environment due to their inferior anti-wear and surface inertia. Manufacturing bone screws with high wear resistance and ideal biocompatibility has always been a challenge. In this study, a series of overlapping morphologies inspired by the hierarchical structure of fish scales and micro bulges of shrimp were structured on Ti-6Al-4V implant by laser texturing. The results indicate that the textured patterns could improve cell attachment, proliferation, and osteogenic differentiation. The short-term response of human bone marrow-derived mesenchymal stem cells (hBMSCs) on the textured surface are more sensitive to the microstructure than the surface roughness, wettability, grain size and surface chemical elements of the textured surfaces. More importantly, the friction-increasing and friction-reducing type overlapping structures exhibit excellent friction stability at different stages of modified simulated body fluid (m-SBF) soaking. The overlapping structure (Micro-smooth stacked ring: MSSR) is more beneficial to promote the formation of apatite. Deposited spherical-like apatite particles can act as a "lubricant" on the MSSR surface during the friction process to alleviate the adhesion wear of the surface. Meanwhile, apatite particles participate in the formation of friction film, which plays an effective role in reducing friction and antiwear in corrosion solution (m-SBF) for a long time. These features show that the combination of soaking treatment in m-SBF solution with laser-textured MSSR structure is expected to be an efficient and environmentally friendly strategy to prolong the service life of bone screws and reducing the complications of mildly osteoporotic implants.


Asunto(s)
Osteogénesis , Titanio , Aleaciones , Animales , Fricción , Humanos , Rayos Láser , Propiedades de Superficie
10.
ACS Nano ; 13(12): 14107-14113, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31765125

RESUMEN

Inversion symmetry breaking and 3-fold rotation symmetry grant the valley degree of freedom to the robust exciton in monolayer transition-metal dichalcogenides, which can be exploited for valleytronics applications. However, the short lifetime of the exciton significantly constrains the possible applications. In contrast, the dark exciton could be long-lived but does not necessarily possess the valley degree of freedom. In this work, we report the identification of the momentum-dark, intervalley exciton in monolayer WSe2 through low-temperature magneto-photoluminescence spectra. Interestingly, the intervalley exciton is brightened through the emission of a chiral phonon at the corners of the Brillouin zone (K point), and the pseudoangular momentum of the phonon is transferred to the emitted photon to preserve the valley information. The chiral phonon energy is determined to be ∼23 meV, based on the experimentally extracted exchange interaction (∼7 meV), in excellent agreement with the theoretical expectation of 24.6 meV. The long-lived intervalley exciton with valley degree of freedom adds an exciting quasiparticle for valleytronics, and the coupling between the chiral phonon and intervalley exciton furnishes a venue for valley spin manipulation.

11.
Nat Commun ; 10(1): 4649, 2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31604933

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

12.
ACS Appl Mater Interfaces ; 11(43): 39470-39483, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31594306

RESUMEN

Rapid and effective osseointegration, as a critical factor in affecting the success rate of titanium (Ti) implants in orthopedic applications, is significantly affected by their surface microstructure and chemical composition. In this work, surface microgrooved Ti-6Al-4V alloys with graphene oxide coating (Ti-G-GO) were fabricated by a combination of laser processing and chemical assembly techniques. The osteogenic capability in vitro and new bone formation in vivo of the implants were systematically investigated, and biomechanical pull-out tests of the screws were also performed. First, in vitro studies indicated that the optimal microgroove width of the titanium alloy surface was 45 µm (Ti-G), and the optimum GO concentration was 1 mg/mL. Furthermore, the effects of the surface microstructure and GO coating on the in vitro bioactivity were investigated through culturing bone marrow mesenchymal stem cells (BMSCs) on the surface of titanium alloy plates. The results showed that the BMSCs cultured on the Ti-G-GO group exhibited the best adhesion, proliferation, and differentiation, compared with that on the Ti-G and Ti groups. Micro-computed tomography evaluation, histological analysis, and pull-out testing demonstrated that both Ti-G and Ti-G-GO implants had the higher osseointegration than the untreated Ti implant. Moreover, the osteogenic capability of the Ti-G-GO group appeared to be superior to that of the Ti-G group, which could be attributed to the improvement of surface wettability and apatite formation by the GO coatings. These results suggest that the combination of the microgroove structure and GO coatings exhibits considerable potential for enhancing the surface bioactivation of materials, and the combination modification is expected to be used on engineered titanium alloy surfaces to enhance osseointegration for orthopedic applications.


Asunto(s)
Células de la Médula Ósea/metabolismo , Prótesis Anclada al Hueso , Materiales Biocompatibles Revestidos , Grafito , Células Madre Mesenquimatosas/metabolismo , Oseointegración , Titanio , Aleaciones , Animales , Células de la Médula Ósea/citología , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Femenino , Grafito/química , Grafito/farmacología , Células Madre Mesenquimatosas/citología , Ratones , Propiedades de Superficie , Titanio/química , Titanio/farmacología
13.
Nat Commun ; 10(1): 2469, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31171789

RESUMEN

Tungsten-based monolayer transition metal dichalcogenides host a long-lived "dark" exciton, an electron-hole pair in a spin-triplet configuration. The long lifetime and unique spin properties of the dark exciton provide exciting opportunities to explore light-matter interactions beyond electric dipole transitions. Here we demonstrate that the coupling of the dark exciton and an optically silent chiral phonon enables the intrinsic photoluminescence of the dark-exciton replica in monolayer WSe2. Gate and magnetic-field dependent PL measurements unveil a circularly-polarized replica peak located below the dark exciton by 21.6 meV, equal to E″ phonon energy from Se vibrations. First-principles calculations show that the exciton-phonon interaction selectively couples the spin-forbidden dark exciton to the intravalley spin-allowed bright exciton, permitting the simultaneous emission of a chiral phonon and a circularly-polarized photon. Our discovery and understanding of the phonon replica reveals a chirality dictated emission channel of the phonons and photons, unveiling a new route of manipulating valley-spin.

14.
Data Brief ; 24: 103467, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30976630

RESUMEN

The lubrication states between the friction pairs in lubrications have an important effect on its tribological behavior. Therefore, the aim of this complementary data article is to identify the corresponding lubrication states between bone and Ti-6Al-4V interface in three biolubricants in reciprocation sliding by the Stribeck theory. Among that, three biolubricated film thicknesses at the stroke center and stroke end were separately calculated using the elastohydrodynamic theory. The current data are considered as a complementary for the main work "Tribological behavior of Ti-6Al-4V against cortical bone in different biolubricants" (Wang et al., 2018).

15.
J Mech Behav Biomed Mater ; 90: 460-471, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30448560

RESUMEN

Titanium alloys (Ti-6Al-4V) are promising materials as bone implants in clinical surgeries owing to their excellent performances. However, wear debris caused by the tribological behavior of the cortical bone and titanium alloy interface were found to be paramount for implant stability. The contact environment between the cortical bone and Ti-6Al-4V in vivo has been considered to affect the tribological behavior. Currently, the tribological behaviors of bone and Ti-6Al-4V in different biolubricants remain elusive. Therefore, in this work, the tribological behaviors of Ti-6Al-4V plates sliding against bovine cortical bone were investigated in dry sliding and in biolubricants of physiological saline (PS), simulated body fluids (SBF), and fetal bovine serum (FBS). Results show that the friction coefficient and wear rate of the bovine cortical bone and Ti-6Al-4V interface exhibit the same sequence as follows: FBS > SBF > PS > dry sliding. These results are attributed to bone hardness variation and corrosion of different biolubricants. Meanwhile, the effects of normal load and velocity on the tribological behavior of bone and Ti-6Al-4V interface were also investigated in dry sliding and three different biolubricants. Results show that as the normal load is increased and the sliding velocity is decreased, the friction coefficient decreases in dry condition, adhering to the Hertz contact theory. However, according to the boundary lubrication theory, the friction coefficient in three biolubricants correlates positively to the normal load and negatively to the sliding velocity. Moreover, the wear rates of the bone samples increase with the increase in normal load and sliding velocity under dry and biolubrication conditions. Finally, the characterization results indicate that the wear mechanisms of the cortical bone and Ti-6Al-4V interface in dry friction are primarily adhesive and abrasive wear. Further, corrosive wear occurs in biolubrications, apart from adhesive and abrasive wear.


Asunto(s)
Materiales Biocompatibles/farmacología , Hueso Cortical/efectos de los fármacos , Lubricantes/farmacología , Titanio/farmacología , Aleaciones , Animales , Materiales Biocompatibles/química , Bovinos , Corrosión , Electroquímica , Fricción , Dureza/efectos de los fármacos , Lubricantes/química , Fenómenos Mecánicos , Propiedades de Superficie , Titanio/química
16.
J Mech Behav Biomed Mater ; 80: 171-179, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29427933

RESUMEN

The frictional performances of surgical sutures have been found to play a vital role in their functionality. The purpose of this paper is to understand the frictional performance of multifilament surgical sutures interacting with skin substitute, by means of a penetration friction apparatus (PFA). The influence of the size of the surgical suture was investigated. The relationship between the friction force and normal force was considered, in order to evaluate the friction performance of a surgical suture penetrating a skin substitute. The friction force was measured by PFA. The normal force applied to the surgical suture was estimated based on a Hertzian contact model, a finite element model (FEM), and a uniaxial deformation model (UDM). The results indicated that the penetration friction force increased as the size of the multifilament surgical suture increased. In addition, when the normal force was predicted by UDM, it was found that the ratio between the friction force and normal force decreased as the normal force increased. A comparison of the results suggested that the UDM was appropriate in predicting the frictional behavior of surgical suturing.


Asunto(s)
Piel Artificial , Suturas , Resistencia a la Tracción , Fricción , Humanos , Ensayo de Materiales
17.
Colloids Surf B Biointerfaces ; 162: 228-235, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29202414

RESUMEN

Surgical sutures have different sizes, structures, whereas they are being used for various surgeries. The high friction performance of surgical sutures in the suturing process may cause inflammation and pain, leading to a longer recovery time. This paper presents an understanding of the tribological behavior of surgical suture with monofilament and multifilament structures, by means of a penetration friction apparatus (PFA). The results indicated that structure and surface topography of the surgical suture had a pronounced effect on the tribological interactions. It was found that the friction force and abrasion area of skin substitute with the penetration of polyglycolic acid (PGA) multifilament surgical suture were larger than that of Nylon monofilament surgical suture. Meanwhile, more abrasion at the pull-in boundary of skin substitute was observed compared with that at the pull-out boundary.


Asunto(s)
Nylons/química , Ácido Poliglicólico/química , Piel Artificial , Técnicas de Sutura/instrumentación , Suturas , Fenómenos Biomecánicos , Fricción , Humanos , Ensayo de Materiales/instrumentación , Resistencia a la Tracción
18.
J Mech Behav Biomed Mater ; 74: 392-399, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28692906

RESUMEN

Nowadays there is a wide variety of surgical sutures available in the market. Surgical sutures have different sizes, structures, materials and coatings, whereas they are being used for various surgeries. The frictional performances of surgical sutures have been found to play a vital role in their functionality. The high friction force of surgical sutures in the suturing process may cause inflammation and pain to the person, leading to a longer recovery time, and the second trauma of soft or fragile tissue. Thus, the investigation into the frictional performance of surgical suture is essential. Despite the unquestionable fact, little is actually known on the friction performances of surgical suture-tissue due to the lack of appropriate test equipment. This study presents a new penetration friction apparatus (PFA) that allowed for the evaluation of the friction performances of various surgical needles and sutures during the suturing process, under different contact conditions. It considered the deformation of tissue and can realize the puncture force measurements of surgical needles as well as the friction force of surgical sutures. The developed PFA could accurately evaluate and understand the frictional behaviour of surgical suture-tissue in the simulating clinical conditions. The forces measured by the PFA showed the same trend as that reported in literatures.


Asunto(s)
Fricción , Suturas , Humanos , Agujas
19.
ACS Appl Mater Interfaces ; 7(47): 26184-94, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26562211

RESUMEN

To efficiently remove and recycle oil spills, we construct aligned ZnO nanorod arrays on the surface of the porous stainless steel wire mesh to fabricate a porous unmanned ship (PUS) with properties of superhydrophobicity, superoleophilicity, and low drag by imitating the structure of nonwetting leg of water strider. The superhydrophobicity of the PUS is stable, which can support 16.5 cm water column with pore size of 100 µm. Water droplet can rebound without adhesion. In the process of oil/water separation, when the PUS contacts with oil, the oil is quickly pulled toward and penetrates into the PUS automatically. The superhydrophobicity and low water adhesion force of the PUS surface endow the PUS with high oil recovery capacity (above 94%) and drag-reducing property (31% at flowing velocity of 0.38m/s). In addition, the PUS has good corrosion resistance and reusability. We further investigate the wetting behavior of water and oil, oil recovery capacity, drag-reducing property, and corrosion resistance of the PUS after oil absorbed. The PUS surface changes significantly from superhydrophobic to hydrophobic after absorbing oil. However, the oil absorbed PUS possesses better drag-reducing property and corrosion resistance due to the changes of the motion state of the water droplets.

20.
Phys Chem Chem Phys ; 16(47): 26193-202, 2014 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-25363326

RESUMEN

A rational design strategy of novel fluorophores for luminescent down-shifting (LDS) application was proposed and tested in this paper. Three new fluorophores (1a-c) with specific intramolecular charge transfer (ICT) and aggregation-induced emission (AIE) characteristics were synthesized as LDS molecules for increasing the output short circuit current density (Jsc) of a CdTe solar cell. Photophysical studies of their solution and solid states, and photovoltaic measurements of their PMMA solid films applied on a CdTe solar cell suggested that the specific spectroscopic properties and Jsc enhancement effects of these molecules were highly related to their chemical structures. The Jsc enhancement effects of these fluorophores were measured on both a CdTe small cell and a large panel. An increase in the output Jsc by as high as 5.69% for a small cell and 8.88% for a large panel was observed. Compared to a traditional LDS molecule, Y083, these fluorophores exhibited more superior capabilities of LDS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...