Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1235708, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37779714

RESUMEN

Drought is the most prevalent environmental stress in crop production, posing a significant danger to food security. Microorganisms in the crop root zone affect crop growth and development, enhance effective nutrient use, and resist adversity hazards. To analyze the changes and functional differences of root space microbial (endosphere-rhizosphere-bulk soil) communities in spring wheat under drought stress. In this study, the root, rhizosphere, and bulk soil of the drought-tolerant group (DTG, three varieties) and drought-sensitive group (DSG, three varieties) were collected. The control (CK, 25-28%), moderate drought (MD, 15-18%), and severe drought (SD, 9-12%) were analyzed by high-throughput sequencing and bioinformatics. The results showed significant differences in the diversity of Bacteria and Fungi in the root space of spring wheat under drought stress (P < 0.05), with the drought-tolerant group exhibiting higher microbial diversity. The microbial community change in spring wheat root space was mainly determined by the niche differentiation of endosphere, rhizosphere, and bulk soil and declined from endosphere to bulk soil due to drought. The antagonism between microbial and root-space species increased, and the community's complexity and stability deteriorated. Enriching drought-resistant preference groups like Actinobaciota, Variovorax, Streptomyces, and Conocybe altered the structure and function of the microbial community in the root space of spring wheat. Spring wheat's root space Bacteria and Fungi have different strategies to respond to drought.

2.
Front Microbiol ; 14: 1167293, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637133

RESUMEN

Crop straw contains huge amounts of exploitable energy, and efficient biomass degradation measures have attracted worldwide attention. Mining strains with high yields of cellulose-degrading enzymes is of great significance for developing clean energy and industrial production of related enzymes. In this study, we reported a high-quality genome sequence of Bacillus velezensis SSF6 strain using high-throughput sequencing technology (Illumina PE150 and PacBio) and assessed its lignocellulose degradation potential. The results demonstrated that the genome of B. velezensis SSF6 was 3.89 Mb and contained 4,015 genes, of which 2,972, 3,831 and 158 genes were annotated in the COGs (Clusters of Orthologous Groups), KEGG (Kyoto Encyclopedia of Genes and Genomes) and CAZyme (Carbohydrate-Active enZymes) databases, respectively, and contained a large number of genes related to carbohydrate metabolism. Furthermore, B. velezensis SSF6 has a high cellulose degradation capacity, with a filter paper assay (FPA) and an exoglucanase activity of 64.48 ± 0.28 and 78.59 ± 0.42 U/mL, respectively. Comparative genomic analysis depicted that B. velezensis SSF6 was richer in carbohydrate hydrolase gene. In conclusion, the cellulose-degrading ability of B. velezensis SSF6 was revealed by genome sequencing and the determination of cellulase activity, which laid a foundation for further cellulose degradation and bioconversion.

3.
Plants (Basel) ; 12(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37570928

RESUMEN

Flax is an economic crop with a long history. It is grown worldwide and is mainly used for edible oil, industry, and textiles. Here, we reported a high-quality genome assembly for "Neiya No. 9", a popular variety widely grown in China. Combining PacBio long reads, Hi-C sequencing, and a genetic map reported previously, a genome assembly of 473.55 Mb was constructed, which covers ~94.7% of the flax genome. These sequences were anchored onto 15 chromosomes. The N50 lengths of the contig and scaffold were 0.91 Mb and 31.72 Mb, respectively. A total of 32,786 protein-coding genes were annotated, and 95.9% of complete BUSCOs were found. Through morphological and cytological observation, the male sterility of flax was considered dominant nuclear sterility. Through GWAS analysis, the gene LUSG00017705 (cysteine synthase gene) was found to be closest to the most significant SNP, and the expression level of this gene was significantly lower in male sterile plants than in fertile plants. Among the significant SNPs identified in the GWAS analysis, only two were located in the coding region, and these two SNPs caused changes in the protein encoded by LUSG00017565 (cysteine protease gene). It was speculated that these two genes may be related to male sterility in flax. This is the first time the molecular mechanism of male sterility in flax has been reported. The high-quality genome assembly and the male sterility genes revealed, provided a solid foundation for flax breeding.

4.
Front Bioeng Biotechnol ; 11: 1191240, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37425359

RESUMEN

Crop rotation and other tillage systems can affect soil microbial communities and functions. Few studies have reported the response of soil spatial microbial communities to rotation under drought stress. Therefore, the purpose of our study was to explore the dynamic changes of the soil space microbial community under different drought stress-rotation patterns. In this study, two water treatments were set up, control W1 (mass water content 25%-28%), and drought W2 (mass water content 9%-12%). Four crop rotation patterns were set in each water content, spring wheat continuous (R1), spring wheat-potato (R2), spring wheat-potato-rape (R3) and spring wheat-rape (R4), for a total of eight treatments (W1R1, W1R2, W1R3, W1R4, W2R1, W2R2, W2R3, W2R4). Endosphere, rhizosphere and bulk soil of spring wheat in each treatment were collected, and root space microbial community data were generated. The soil microbial community changed under different treatments and their relationship with soil factors were analyzed using a co-occurrence network, mantel test, and other methods. The results revealed that the alpha diversity of microorganisms in the rhizosphere and bulk soil did not differ significantly, but it was significantly greater than in the endosphere. The bacteria community structure was more stable, fungi alpha-diversity significant changes (p < 0.05), that were more sensitive to the response of various treatments than bacteria. The co-occurrence network between fungal species was stable under rotation patterns (R2, R3, R4), while the community stability was poor under continuous cropping pattern (R1), and interactions were strengthened. Soil organic matter (SOM), microbial biomass carbon (MBC), and pH value were the most important factors dominating the bacteria community structural changed in the endosphere, rhizosphere, and bulk soil. The dominant factor that affected the fungal community structural changed in the endosphere, rhizosphere, and bulk soil was SOM. Therefore, we conclude that soil microbial community changes under the drought stress-rotation patterns are mainly influenced by soil SOM and microbial biomass content.

5.
Huan Jing Ke Xue ; 44(2): 1063-1073, 2023 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-36775629

RESUMEN

To explore the effects of different long-term fertilization treatments on soil microbial diversity and community structure in the drylands of an agro-pastoral ecotone, a long-term fertilization experiment at the Inner Mongolia cultivated land conservation science observation and experiment station, Ministry of Agriculture, and rural areas was taken as the research object. Four treatments, including no fertilizer (CK), single nitrogen fertilizer (NF), single chemical fertilizer (CF), and the combined application of organic manure and chemical fertilizer (CFM), were selected for the collection of 0-10 cm and 10-20 cm soil at potato maturity 16 years after the experiment (2019). High-throughput sequencing technology was used to assess the soil bacterial and fungal communities to explore the effects of different fertilization measures on soil quality from the perspective of microorganisms, and the partial least squares path model (PLS-PM) was used to reveal the key environmental driving factors of soil microbial community alternation and crop yield improvement in dryland during fertilization mode transformation. The results showed that:① the CF and CFM treatments significantly improved soil fertility, but the effect of the latter was significantly better than that of the former. Soil available nitrogen, available phosphorus, and available potassium in the CFM treatment increased by 131.9%-174.7%, 216.9%-283.3%, and 103.3%-109.3%, respectively, and organic matter and total nitrogen content also increased significantly. The CF treatment still maintained a high soil pH, whereas the NF treatment significantly decreased soil pH and had little effect in improving soil fertility. ② Compared with that under CK, the NF treatment significantly reduced the soil bacterial Chao1 and Shannon index, and the CFM treatment significantly increased the soil bacterial species richness, Chao1 index, and soil fungal Shannon index, whereas soil bacterial and fungal diversity in the CF treatment did not reach a significant difference level with CK. ③ The soil microbial community composition at 0-10 cm and 10-20 cm was similar. The CFM treatment increased the relative abundance of soil beneficial bacteria and decreased the relative abundance of pathogenic bacteria. The relative abundance of dominant bacteria such as Proteobacteria, Bacteroidetes, and Gemmatimonadetes increased. The relative abundances of Actinobacteria, Ascomycota, and Basidiomycota were decreased, whereas the NF and CF treatments showed the opposite trend. ④ PLS-PM analysis showed that with the gradual change in fertilization mode from CK→NF→CF→CFM, the driving factors affecting microbial community succession and yield increase were also changed from soil pH→soil NPK content→soil pH, SOM, and NPK content. In general, long-term fertilization had significant effects on soil chemical properties and microbial communities in drylands in the agro-pastoral ecotone. As the optimal fertilization choice, CFM was significantly better than NF and CF in improving soil fertility and inhibiting the growth of pathogenic microorganisms. The number of pathogens in long-term non-fertilization and unbalanced fertilization soil was significantly increased, and the risk of crop infection to indigenous diseases was increased. The research results can provide scientific reference for farmland nutrient balance management and soil microenvironment improvement of the agricultural ecosystem in the agro-pastoral ecotone in North China.


Asunto(s)
Microbiota , Suelo , Suelo/química , Microbiología del Suelo , Agricultura , Bacterias , Fertilizantes/análisis , Nitrógeno/análisis
6.
Genome Biol Evol ; 15(3)2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36807517

RESUMEN

The yellow nutsedge (Cyperus esculentus L. 1753) is an unconventional oil plant with oil-rich tubers, and a potential alternative for traditional oil crops. Here, we reported the first high-quality and chromosome-level genome assembly of the yellow nutsedge generated by combining PacBio HiFi long reads, Novaseq short reads, and Hi-C data. The final genome size is 225.6 Mb with an N50 of 4.3 Mb. More than 222.9 Mb scaffolds were anchored to 54 pseudochromosomes with a BUSCO score of 96.0%. We identified 76.5 Mb (33.9%) repetitive sequences across the genome. A total of 23,613 protein-coding genes were predicted in this genome, of which 22,847 (96.8%) were functionally annotated. A whole-genome duplication event was found after the divergence of Carex littledalei and Rhynchospora breviuscula, indicating the rich genetic resources of this species for adaptive evolution. Several significantly enriched GO terms were related to invasiveness of the yellow nutsedge, which may explain its plastic adaptability. In addition, several enriched Kyoto Encyclopedia of Genes and Genomes pathways and expanded gene families were closely related with substances in tubers, partially explaining the genomic basis of characteristics of this oil-rich tuber.


Asunto(s)
Cyperus , Cyperus/genética , Cyperus/metabolismo , Cromosomas , Genómica , Genoma , Secuencias Repetitivas de Ácidos Nucleicos
7.
PLoS One ; 18(2): e0274054, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36757955

RESUMEN

Image contrast enhancement uses the object intensity transformation function to maximize the amount of information to enhance an image. In this paper, the image enhancement problem is regarded as an optimization problem, and the particle swarm algorithm is used to obtain the optimal solution. First, an improved particle swarm optimization algorithm is proposed. In this algorithm, individual optimization, local optimization, and global optimization are used to adjust the particle's flight direction. In local optimization, the topology is used to induce comparison and communication between particles. The sparse penalty term in speed update formula is added to adjust the sparsity of the algorithm and the size of the solution space. Second, the three channels of the color images R, G, and B are represented by a quaternion matrix, and an improved particle swarm algorithm is used to optimize the transformation parameters. Finally, contrast and brightness elements are added to the fitness function. The fitness function is used to guide the particle swarm optimization algorithm to optimize the parameters in the transformation function. This paper verifies via two experiments. First, improved particle swarm algorithm is simulated and tested. By comparing the average values of the four algorithms under the three types of 6 test functions, the average value is increased by at least 15 times in the single-peak 2 test functions: in the multi-peak and multi-peak fixed-dimension 4 test functions, this paper can always search for the global optimal solution, and the average value is either the same or at least 1.3 times higher. Second, the proposed algorithm is compared with other evolutionary algorithms to optimize contrast enhancement, select images in two different data sets, and calculate various evaluation indicators of different algorithms under different images. The optimal value is the algorithm in this paper, and the performance indicators are at least a 5% increase and a minimum 15% increase in algorithm running time. Final results show that the effects the proposed algorithm have obvious advantages in both subjective and qualitative aspects.


Asunto(s)
Algoritmos , Aumento de la Imagen
8.
Food Funct ; 13(5): 2647-2661, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35167638

RESUMEN

Lead can lead to neurotoxicity and cognitive impairment. In this study, for the first time, the protective effects and working mechanisms of apple phenolic extracts (APEs) against lead acetate (Pb(Ac)2)-induced cognitive impairment and depression- and anxiety-like behavior were examined in vivo. Forty male mice were administered daily (via gastric gavage; 8 weeks) with 0.9% normal saline (control), Pb(Ac)2 (20 ppm), APE (200 ppm) or Pb(Ac)2 (20 ppm) + APE (200 ppm). The APE contained five major phenolic compounds: chlorogenic acid, proanthocyanidin B2, epicatechin, phloridzin and phloretin. Behavioral tests, histopathological examinations and biochemical analyses revealed that Pb(Ac)2-treated mice exhibited cognitive and behavioral deficits (i.e. a reduced percentage of spontaneous alternation, prolonged duration of immobility and decreased open field test scores compared with the control. Pb(Ac)2 exposure significantly increased cellular oxidative damage and the levels of pro-inflammatory cytokines (interleukin (IL)-1ß, IL-6 and tumor necrosis factor-α (TNF-α), ionized calcium binding adaptor molecule 1 (Iba1) and pro-apoptotic proteins (caspase 3, caspase 9 and Bax), while downregulating the expression of Bcl-2 in the brain. APE administration alleviated these Pb(Ac)2-induced changes through regulating oxidative stress, neuroinflammation and apoptosis via the miR-22-3p/Sirtuin 1 (SIRT1) signaling pathway. Taken together, the APE has the potential to treat lead-induced neurotoxicity and neurodegenerative disorders via antioxidant, anti-inflammatory and anti-apoptotic actions.


Asunto(s)
Malus , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Animales no Consanguíneos , Conducta Animal/efectos de los fármacos , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/prevención & control , Modelos Animales de Enfermedad , Masculino , Ratones , MicroARNs/metabolismo , Fármacos Neuroprotectores/química , Compuestos Organometálicos/efectos adversos , Extractos Vegetales/química , Sirtuina 1/metabolismo
9.
Micromachines (Basel) ; 13(1)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35056263

RESUMEN

Capacitive micromachined ultrasound transducers (CMUTs) have broad application prospects in medical imaging, flow monitoring, and nondestructive testing. CMUT arrays are limited by their fabrication process, which seriously restricts their further development and application. In this paper, a vacuum-sealed device for medical applications is introduced, which has the advantages of simple manufacturing process, no static friction, repeatability, and high reliability. The CMUT array suitable for medical imaging frequency band was fabricated by a silicon wafer bonding technology, and the adjacent array devices were isolated by an isolation slot, which was cut through the silicon film. The CMUT device fabricated following this process is a 4 × 16 array with a single element size of 1 mm × 1 mm. Device performance tests were conducted, where the center frequency of the transducer was 3.8 MHz, and the 6 dB fractional bandwidth was 110%. The static capacitance (29.4 pF) and center frequency (3.78 MHz) of each element of the array were tested, and the results revealed that the array has good consistency. Moreover, the transmitting and receiving performance of the transducer was evaluated by acoustic tests, and the receiving sensitivity was -211 dB @ 3 MHz, -213 dB @ 4 MHz. Finally, reflection imaging was performed using the array, which provides certain technical support for the research of two-dimensional CMUT arrays in the field of 3D ultrasound imaging.

10.
Materials (Basel) ; 14(10)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065188

RESUMEN

In the present study, the microstructures and properties of DSS 2205 solid wire MIG welded samples prepared in different shielding gases (pure Ar gas, 98%Ar + 2%O2 and 98%Ar + 2%N2) were investigated for improving the weldability of DSS 2205 welded joint. The work was conducted by mechanical property tests (hardness and tensile test) and corrosion resistance property tests (immersion and electrochemical tests). The results show that adding 2%O2 into pure Ar gas as the shielding gas decreases crystal defects (faults) and improves the mechanical properties and corrosion resistance of the welded joints. Phase equilibrium and microstructural homogeneity in welded seam (WS) and heat-affected zone (HAZ) can be adjusted and the strength and corrosion resistance of welded joints increased obviously by adding 2%N2 to pure Ar gas as the shielding gas. Compared with DSS 2205 solid wire MIG welding in 98%Ar + 2%O2 mixed atmosphere, the strength and corrosion resistance of welded joints are improved more obviously in 98%Ar + 2%N2 mixed atmosphere.

11.
Ecotoxicol Environ Saf ; 207: 111578, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33254423

RESUMEN

Cadmium (Cd), an environmental pollutant, is evidenced to cause hepatotoxicity. In this study, the potential protective effect of caffeic acid phenethyl ester (CAPE) on cadmium-induced liver damage was investigated. Forty male mice were treated daily with either CdCl2 (1.5 mg/kg body weight (b.w.), gavage) or CAPE (10 µmol/kg b.w., gavage) or both for 4 weeks. CAPE administration significantly reduced Cd level and liver and body weight, and increased AST, ALT and ALP level. Moreover, CAPE prevented CdCl2-induced oxidative stress via PI3K/Akt/mTOR pathway and inhibited apoptosis by regulating apoptosis markers. CAPE also suppressed the CdCl2-induced inflammation by reducing the inflammatory mediators, including TNF-α, IL-6 and IL-1ß. Furthermore, CAPE alleviated CdCl2-induced reduction of TLR4. It should be noted that this effect was achieved by targeting miR-182-5p, and CAPE improved miR-182-5p level. The improvement of the liver tissue histopathology by CAPE confirmed the biochemical data. These results show for the first time that miR-182-5p/TLR4 axis involved in CAPE's protection against CdCl2-induced hepatotoxicity, and may provide novel insights into the treatment of cadmium-related diseases.


Asunto(s)
Cadmio/toxicidad , Ácidos Cafeicos/farmacología , Contaminantes Ambientales/toxicidad , Alcohol Feniletílico/análogos & derivados , Sustancias Protectoras/farmacología , Animales , Apoptosis/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas , Inflamación , Mediadores de Inflamación/metabolismo , Masculino , Ratones , MicroARNs/metabolismo , Estrés Oxidativo/efectos de los fármacos , Alcohol Feniletílico/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Rol , Receptor Toll-Like 4/metabolismo
12.
Materials (Basel) ; 13(19)2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32992717

RESUMEN

Stress relief treatments were carried out separately with a pneumatic chipping hammer, ultrasonic peening treatment, and heat treatment for metal active-gas welding (MAG) welded joints of 2205 duplex stainless steel. The effects of these methods on the residual stress, microstructure, mechanical properties and corrosion resistance of welded joints were studied. Results show the stress state of the weld and the surrounding area was effectively improved by the pneumatic chipping hammer and ultrasonic peening treatment, and the residual stress field of the surface layer changed from tensile stress to compressive stress. On the contrary, low-temperature stress relieving annealing had no obvious effect on stress distribution. After the pneumatic chipping hammer and ultrasonic peening treatment, the welded joints were machined and hardened. Correspondingly, strength and hardness were improved. However, the heat treatment only led to a slight decrease in strength and hardness due to the static recovery of the welded joint structure. All stress relief methods effectively improved the corrosion resistance of welded joints, with the ultrasonic peening treatment giving the best performance.

13.
PLoS One ; 13(10): e0205072, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30289924

RESUMEN

Cables play an important role in transmitting energy and information. In this article, in order to obtain the S-parameters of the special twisted pair cable with rectangular connectors, a de-embedding method of the transmission matrix is proposed to deal with the two adapters ends of the cable. According to the frequency-dependent RLGC(f) model, the cable characteristics are extracted in the frequency range of 10 MHz to 200 MHz through conventional and modified methods respectively. The frequency-domain analysis shows that the inherent capacity of modified method can decrease the errors especially due to the discontinuities of hyperbolic functions. This research supplies an advantageous modelling approach for the cable to improve its robustness against disturbances in the S-parameters measurement that cannot be decreased with the calibration procedure.


Asunto(s)
Equipos y Suministros Eléctricos , Modelos Teóricos
14.
Cell ; 159(3): 558-71, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25417107

RESUMEN

The recognition of modified histones by "reader" proteins constitutes a key mechanism regulating gene expression in the chromatin context. Compared with the great variety of readers for histone methylation, few protein modules that recognize histone acetylation are known. Here, we show that the AF9 YEATS domain binds strongly to histone H3K9 acetylation and, to a lesser extent, H3K27 and H3K18 acetylation. Crystal structural studies revealed that AF9 YEATS adopts an eight-stranded immunoglobin fold and utilizes a serine-lined aromatic "sandwiching" cage for acetyllysine readout, representing a novel recognition mechanism that is distinct from that of known acetyllysine readers. ChIP-seq experiments revealed a strong colocalization of AF9 and H3K9 acetylation genome-wide, which is important for the chromatin recruitment of the H3K79 methyltransferase DOT1L. Together, our studies identified the evolutionarily conserved YEATS domain as a novel acetyllysine-binding module and established a direct link between histone acetylation and DOT1L-mediated H3K79 methylation in transcription control.


Asunto(s)
Código de Histonas , Metiltransferasas/química , Metiltransferasas/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Acetilación , Secuencia de Aminoácidos , Regulación de la Expresión Génica , Histona Acetiltransferasas/química , Histona Acetiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina , Histonas/metabolismo , Humanos , Metilación , Modelos Moleculares , Datos de Secuencia Molecular , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Transcripción Genética
15.
Carcinogenesis ; 35(9): 2127-33, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24913918

RESUMEN

Hepatitis B virus surface antigen (HBsAg) is an important risk factor for hepatocellular carcinoma (HCC) and is downregulated during hepatocarcinogenesis. MicroRNAs (miRNAs) are frequently deregulated in HCC tissues. However, whether the deregulation of certain miRNAs in HCC has an impact on HBsAg expression remains unclear. We found here that microRNA-581 (miR-581), which is deregulated during hepatocarcinogenesis, promoted HBsAg expression. Additionally, miR-581 targeted Dicer and endoplasmic reticulum degradation-enhancing alpha-mannosidase-like protein 1 (EDEM1) and repressed their expression. Although Dicer cannot process HBV transcripts, Dicer knockdown led to increased HBsAg secretion, most likely due to a reduction in the levels of Dicer-processed 7SL RNA fragments. Moreover, Dicer-processed 7SL RNA fragments partially inhibited the ability of miR-581 to stimulate HBsAg expression. Furthermore, we found that forced EDEM1 expression inhibited miR-581-mediated induction of HBsAg. Finally, transfection of miR-581 into HepG2.2.15 cells promoted cell proliferation and led to upregulation of genes involved in development, cell proliferation and protein secretion. Altogether, we conclude that miR-581 promotes HBsAg expression by targeting Dicer and EDEM1. Our findings suggest that downregulation of miR-581 during hepatocarcinogenesis may lead to a reduction in HBsAg expression and impede HCC development.


Asunto(s)
ARN Helicasas DEAD-box/genética , Antígenos de Superficie de la Hepatitis B/metabolismo , Proteínas de la Membrana/genética , MicroARNs/genética , Ribonucleasa III/genética , Regiones no Traducidas 3' , Sitios de Unión , ARN Helicasas DEAD-box/metabolismo , Regulación Neoplásica de la Expresión Génica , Regulación Viral de la Expresión Génica , Células Hep G2 , Humanos , Proteínas de la Membrana/metabolismo , Interferencia de ARN , Ribonucleasa III/metabolismo
16.
Nature ; 508(7495): 263-8, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24590075

RESUMEN

Recognition of modified histones by 'reader' proteins plays a critical role in the regulation of chromatin. H3K36 trimethylation (H3K36me3) is deposited onto the nucleosomes in the transcribed regions after RNA polymerase II elongation. In yeast, this mark in turn recruits epigenetic regulators to reset the chromatin to a relatively repressive state, thus suppressing cryptic transcription. However, much less is known about the role of H3K36me3 in transcription regulation in mammals. This is further complicated by the transcription-coupled incorporation of the histone variant H3.3 in gene bodies. Here we show that the candidate tumour suppressor ZMYND11 specifically recognizes H3K36me3 on H3.3 (H3.3K36me3) and regulates RNA polymerase II elongation. Structural studies show that in addition to the trimethyl-lysine binding by an aromatic cage within the PWWP domain, the H3.3-dependent recognition is mediated by the encapsulation of the H3.3-specific 'Ser 31' residue in a composite pocket formed by the tandem bromo-PWWP domains of ZMYND11. Chromatin immunoprecipitation followed by sequencing shows a genome-wide co-localization of ZMYND11 with H3K36me3 and H3.3 in gene bodies, and its occupancy requires the pre-deposition of H3.3K36me3. Although ZMYND11 is associated with highly expressed genes, it functions as an unconventional transcription co-repressor by modulating RNA polymerase II at the elongation stage. ZMYND11 is critical for the repression of a transcriptional program that is essential for tumour cell growth; low expression levels of ZMYND11 in breast cancer patients correlate with worse prognosis. Consistently, overexpression of ZMYND11 suppresses cancer cell growth in vitro and tumour formation in mice. Together, this study identifies ZMYND11 as an H3.3-specific reader of H3K36me3 that links the histone-variant-mediated transcription elongation control to tumour suppression.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proteínas Portadoras/metabolismo , Histonas/metabolismo , Lisina/metabolismo , ARN Polimerasa II/metabolismo , Elongación de la Transcripción Genética , Secuencia de Aminoácidos , Animales , Neoplasias de la Mama/metabolismo , Proteínas Portadoras/química , Proteínas de Ciclo Celular , Cromatina/genética , Cromatina/metabolismo , Proteínas Co-Represoras/química , Proteínas Co-Represoras/metabolismo , Cristalografía por Rayos X , Proteínas de Unión al ADN , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Histonas/química , Humanos , Metilación , Ratones , Ratones Desnudos , Modelos Moleculares , Datos de Secuencia Molecular , Oncogenes/genética , Pronóstico , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato
17.
Carcinogenesis ; 35(1): 155-63, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23917076

RESUMEN

Hepatitis B surface antigen (HBsAg) seropositivity is an important risk factor for hepatocellular carcinoma (HCC), and HBsAg-transgenic mice have been reported to spontaneously develop HCC. The major histocompatibility complex class I-related molecules A and B (MICA and MICB) are NKG2D ligands that play important roles in tumor immune surveillance. In the present study, we found that HBsAg overexpression in HepG2 cells led to upregulation of 133 and downregulation of 9 microRNAs (miRNAs). Interestingly, several HBsAg-induced miRNAs repressed the expression of MICA and MICB via targeting their 3'-untranslated regions. In addition, the expression of MICA and MICB was significantly reduced upon HBsAg overexpression, which was partially restored by inhibiting the activities of HBsAg-induced miRNAs. Moreover, HBsAg-overexpressing HCC cells exhibited reduced sensitivity to natural killer cell-mediated cytolysis. Taken together, our data suggest that HBsAg supresses the expression of MICA and MICB via induction of cellular miRNAs, thereby preventing NKG2D-mediated elimination of HCC cells.


Asunto(s)
Carcinoma Hepatocelular/virología , Antígenos de Superficie de la Hepatitis B/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Neoplasias Hepáticas/virología , MicroARNs/genética , Carcinoma Hepatocelular/genética , Regulación Neoplásica de la Expresión Génica , Células Hep G2/virología , Antígenos de Superficie de la Hepatitis B/genética , Virus de la Hepatitis B/patogenicidad , Virus de la Hepatitis B/fisiología , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/patología , Neoplasias Hepáticas/genética
18.
PLoS One ; 8(2): e56950, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23468895

RESUMEN

We have shown that Dicer processes 7SL RNA into different fragments ranging from ∼20 to more than 200 nucleotides. Here we addressed the molecular functions of these 7SL RNA fragments and found that some of them functioned as dominant-negative regulators of the full-length 7SL RNA, interfering with signal recognition particle (SRP) complex formation. Transfection of these 7SL RNA fragments inhibited the expression of cell surface glycoproteins, the targeting of a reporter protein to the endoplasmic reticulum, and the secretion of secreted alkaline phosphatase. These results suggest that some Dicer-processed 7SL RNA fragments interfered with SRP-mediated protein targeting. Moreover, we showed that Dicer knockdown enhanced SRP-mediated protein targeting and that transfection of a mixture of the 7SL RNA fragments partially restored this effect. Our data indicate that Dicer can fine-tune the efficiency of SRP-mediated protein targeting via processing a proportion of 7SL RNA into fragments of different lengths.


Asunto(s)
ARN Helicasas DEAD-box/genética , Ribonucleasa III/genética , Partícula de Reconocimiento de Señal/metabolismo , Línea Celular , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Complejos Multiproteicos/metabolismo , Transporte de Proteínas , ARN Citoplasmático Pequeño/genética , ARN Citoplasmático Pequeño/metabolismo , Partícula de Reconocimiento de Señal/genética
19.
PLoS One ; 7(7): e40705, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22808238

RESUMEN

It has been reported that decreased Dicer expression leads to Alu RNAs accumulation in human retinal pigmented epithelium cells, and Dicer may process the endogenous SINE/B1 RNAs (the rodent equivalent of the primate Alu RNAs) into small interfering RNAs (siRNAs). In this study, we aimed to address whether Dicer can process Alu RNAs and their common ancestor, 7SL RNA. Using Solexa sequencing technology, we showed that Alu-derived small RNAs accounted for 0.6% of the total cellular small RNAs in HepG2.2.15 cells, and the abundance decreased when Dicer was knocked down. However, Alu-derived small RNAs showed different characteristics from miRNAs and siRNAs, the classic Dicer-processed products. Interestingly, we found that small RNAs derived from 7SL RNA accounted for 3.1% of the total cellular small RNAs in the control cells, and the abundance dropped about 3.4 folds in Dicer knockdown cells. Dicer-dependent biogenesis of 7SL RNA-derived small RNAs was validated by northern blotting. In vitro cleavage assay using the recombinant human Dicer protein also showed that synthetic 7SL RNA was processed by Dicer into fragments of different lengths. Further functional analysis suggested that 7SL RNA-derived small RNAs do not function like miRNAs, neither do they regulate the expression of 7SL RNA. In conclusion, the current study demonstrated that Dicer can process 7SL RNA, however, the biological significance remains to be elucidated.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , ARN Citoplasmático Pequeño/metabolismo , ARN Interferente Pequeño/biosíntesis , Ribonucleasa III/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Elementos Alu/genética , Animales , Secuencia de Bases , Epigénesis Genética , Técnicas de Silenciamiento del Gen , Células HEK293 , Células Hep G2 , Humanos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Procesamiento Postranscripcional del ARN/genética , ARN Citoplasmático Pequeño/química , ARN Citoplasmático Pequeño/genética , Partícula de Reconocimiento de Señal/química , Partícula de Reconocimiento de Señal/genética
20.
Carcinogenesis ; 33(3): 519-28, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22198213

RESUMEN

MicroRNA-34a (miR-34a), a transcriptional target of p53, is a well-known tumor suppressor gene. Here, we identified Fra-1 as a new target of miR-34a and demonstrated that miR-34a inhibits Fra-1 expression at both protein and messenger RNA levels. In addition, we found that p53 indirectly regulates Fra-1 expression via a miR-34a-dependant manner in colon cancer cells. Overexpression of miR-34a strongly inhibited colon cancer cell migration and invasion, which can be partially rescued by forced expression of the Fra-1 transcript lacking the 3'-untranslated region. The expression of matrix metalloproteinase (MMP)-1 and MMP-9, two enzymes involved in cell migration and invasion, was decreased in miR-34a-transfected cells, and this can be rescued by Fra-1 overexpression. Moreover, we found that miR-34a was downregulated in 25 of 40 (62.5%) colon cancer tissues, as compared with the adjacent normal colon tissues and that the expression of miR-34a was correlated with the DNA-binding activity of p53. Unexpectedly, the DNA-binding activity of p53 was not inversely correlated with Fra-1 expression, and a significant statistical inverse correlation between miR-34a and Fra-1 expression was only observed in 14 of 40 (35%) colon cancer tissues. Taken together, our in vitro data suggest that p53 regulates Fra-1 expression, and eventually cell migration/invasion, via a miR-34a-dependent manner. However, in vivo data indicate that the p53-miR-34a pathway is not the major regulator of Fra-1 expression in human colon cancer tissues.


Asunto(s)
Neoplasias del Colon/metabolismo , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Regiones no Traducidas 3' , Línea Celular Tumoral , Movimiento Celular , Neoplasias del Colon/genética , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Genes p53 , Células HEK293 , Humanos , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , MicroARNs/biosíntesis , MicroARNs/genética , Invasividad Neoplásica , Proteínas Proto-Oncogénicas c-fos/biosíntesis , ARN Mensajero/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA