Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38732799

RESUMEN

Additive manufacturing (AM) technology has recently seen increased utilization due to its versatility in using functional materials, offering a new pathway for next-generation conformal electronics in the smart sensor field. However, the limited availability of polymer-based ultraviolet (UV)-curable materials with enhanced piezoelectric properties necessitates the development of a tailorable process suitable for 3D printing. This paper investigates the structural, thermal, rheological, mechanical, and piezoelectric properties of a newly developed sensor resin material. The polymer resin is based on polyvinylidene fluoride (PVDF) as a matrix, mixed with constituents enabling UV curability, and boron nitride nanotubes (BNNTs) are added to form a nanocomposite resin. The results demonstrate the successful micro-scale printability of the developed polymer and nanocomposite resins using a liquid crystal display (LCD)-based 3D printer. Additionally, incorporating BNNTs into the polymer matrix enhanced the piezoelectric properties, with an increase in the voltage response by up to 50.13%. This work provides new insights for the development of 3D printable flexible sensor devices and energy harvesting systems.

2.
ACS Appl Mater Interfaces ; 16(7): 9362-9370, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38324407

RESUMEN

Wings of Morph aega butterflies are natural surfaces that exhibit anisotropic liquid wettability. The direction-dependent arrangement of the wing scales creates orientation-turnable microstructures with two distinct contact modes for liquid droplets. Enabled by recent developments in additive manufacturing, such natural surface designs coupled with hydrophobicity play a crucial role in applications such as self-cleaning, anti-icing, and fluidic manipulation. However, the interplay among resolution, architecture, and performance of bioinspired structures is barely achieved. Herein, inspired by the wing scales of the Morpho aega butterfly, full-scale synthetic surfaces with anisotropic wettability fabricated by two-photon polymerization are reported. The quality of the artificial butterfly scale is improved by optimizing the laser scanning strategy and the objective lens movement path. The corresponding contact angles of water on the fabricated architecture with various design parameters are measured, and the anisotropic fluidic wettability is investigated. Results demonstrate that tuning the geometrical parameters and spatial arrangement of the artificial wing scales enables anisotropic behaviors of the droplet's motion. The measured results also indicate a reverse phenomenon of the fabricated surfaces in contrast to their natural counterparts, possibly attributed to the significant difference in equilibrium wettability between the fabricated microstructures and the natural Morpho aega surface. These findings are utilized to design next-generation fluid-controllable interfaces for manipulating liquid mobility on synthetic surfaces.

3.
Polymers (Basel) ; 15(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38006101

RESUMEN

Recent developments in micro-scale additive manufacturing (AM) have opened new possibilities in state-of-the-art areas, including microelectromechanical systems (MEMS) with intrinsically soft and compliant components. While fabrication with soft materials further complicates micro-scale AM, a soft photocurable polydimethylsiloxane (PDMS) resin, IP-PDMS, has recently entered the market of two-photon polymerization (2PP) AM. To facilitate the development of microdevices with soft components through the application of 2PP technique and IP-PDMS material, this research paper presents a comprehensive material characterization of IP-PDMS. The significance of this study lies in the scarcity of existing research on this material and the thorough investigation of its properties, many of which are reported here for the first time. Particularly, for uncured IP-PDMS resin, this work evaluates a surface tension of 26.7 ± 4.2 mN/m, a contact angle with glass of 11.5 ± 0.6°, spin-coating behavior, a transmittance of more than 90% above 440 nm wavelength, and FTIR with all the properties reported for the first time. For cured IP-PDMS, novel characterizations include a small mechanical creep, a velocity-dependent friction coefficient with glass, a typical dielectric permittivity value of 2.63 ± 0.02, a high dielectric/breakdown strength for 3D-printed elastomers of up to 73.3 ± 13.3 V/µm and typical values for a spin coated elastomer of 85.7 ± 12.4 V/µm, while the measured contact angle with water of 103.7 ± 0.5°, Young's modulus of 5.96 ± 0.2 MPa, and viscoelastic DMA mechanical characterization are compared with the previously reported values. Friction, permittivity, contact angle with water, and some of the breakdown strength measurements were performed with spin-coated cured IP-PDMS samples. Based on the performed characterization, IP-PDMS shows itself to be a promising material for micro-scale soft MEMS, including microfluidics, storage devices, and micro-scale smart material technologies.

4.
Front Robot AI ; 9: 1034914, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36591410

RESUMEN

Dielectric elastomer actuator (DEA) is a smart material that holds promise for soft robotics due to the material's intrinsic softness, high energy density, fast response, and reversible electromechanical characteristics. Like for most soft robotics materials, additive manufacturing (AM) can significantly benefit DEAs and is mainly applied to the unimorph DEA (UDEA) configuration. While major aspects of UDEA modeling are known, 3D printed UDEAs are subject to specific material and geometrical limitations due to the AM process and require a more thorough analysis of their design and performance. Furthermore, a figure of merit (FOM) is an analytical tool that is frequently used for planar DEA design optimization and material selection but is not yet derived for UDEA. Thus, the objective of the paper is modeling of 3D printed UDEAs, analyzing the effects of their design features on the actuation performance, and deriving FOMs for UDEAs. As a result, the derived analytical model demonstrates dependence of actuation performance on various design parameters typical for 3D printed DEAs, provides a new optimum thickness to Young's modulus ratio of UDEA layers when designing a 3D printed DEA with fixed dielectric elastomer layer thickness, and serves as a base for UDEAs' FOMs. The FOMs have various degrees of complexity depending on considered UDEA design features. The model was numerically verified and experimentally validated through the actuation of a 3D printed UDEA. The fabricated and tested UDEA design was optimized geometrically by controlling the thickness of each layer and from the material perspective by mixing commercially available silicones in non-standard ratios for the passive and dielectric layers. Finally, the prepared non-standard mix ratios of the silicones were characterized for their viscosity dynamics during curing at various conditions to investigate the silicones' manufacturability through AM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...