Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Genet ; 12: 695245, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539736

RESUMEN

BACKGROUND: Epithelial ovarian carcinoma (EOC) is a malignant tumor with high motility in women. Our previous study found that dysregulated nucleoside-triphosphatase cancer-related (NTPCR) was associated with the prognosis of EOC patients, and thus, this present study attempted to explore the potential roles of NTPCR in disease progression. METHODS: Expressed level of NTPCR was investigated in EOC tissues by RT-qPCR and Western blot analysis. NTPCR shRNA and overexpression vector were generated and transfected into OVCAR-3 or SKOV3 cells to detect the effect of NTPCR on cell proliferation, cell cycle, cell migration, and invasion. Transcriptomic sequencing and metabolite profiling analysis were performed in shNTPCR groups to identify transcriptome or metabolite alteration that might contribute to EOC. Finally, we searched the overlapped signaling pathways correlated with differential metabolites and differentially expressed genes (DEGs) by integrating analysis. RESULTS: Comparing para-cancerous tissues, we found that NTPCR is highly expressed in cancer tissues (p < 0.05). Overexpression of NTPCR inhibited cell proliferation, migration, and invasion and reduced the proportion of S- and G2/M-phase cells, while downregulation of NTPCR showed the opposite results. RNA sequencing analysis demonstrated cohorts of DEGs were identified in shNTPCR samples. Protein-protein interaction networks were constructed for DEGs. STAT1 (degree = 43) and OAS2 (degree = 36) were identified as hub genes in the network. Several miRNAs together with target genes were predicted to be crucial genes related to disease progression, including hsa-miR-124-3p, hsa-miR-30a-5p, hsa-miR-146a-5, EP300, GATA2, and STAT3. We also screened the differential metabolites from shNTPCR samples, including 22 upregulated and 22 downregulated metabolites. By integrating transcriptomics and metabolomics analysis, eight overlapped pathways were correlated with these DEGs and differential metabolites, such as primary bile acid biosynthesis, protein digestion, and absorption, pentose, and glucuronate interconversions. CONCLUSION: NTPCR might serve as a tumor suppressor in EOC progression. Our results demonstrated that DEGs and differential metabolites were mainly related to several signaling pathways, which might be a crucial role in the progression of NTPCR regulation of EOC.

2.
IEEE/ACM Trans Comput Biol Bioinform ; 18(4): 1250-1261, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33406042

RESUMEN

Since the COVID-19 epidemic is still expanding around the world and poses a serious threat to human life and health, it is necessary for us to carry out epidemic transmission prediction, whole genome sequence analysis, and public psychological stress assessment for 2019-nCoV. However, transmission prediction models are insufficiently accurate and genome sequence characteristics are not clear, and it is difficult to dynamically assess the public psychological stress state under the 2019-nCoV epidemic. Therefore, this study develops a 2019nCoVAS web service (http://www.combio-lezhang.online/2019ncov/home.html) that not only offers online epidemic transmission prediction and lineage-associated underrepresented permutation (LAUP) analysis services to investigate the spreading trends and genome sequence characteristics, but also provides psychological stress assessments based on such an emotional dictionary that we built for 2019-nCoV. Finally, we discuss the shortcomings and further study of the 2019nCoVAS web service.


Asunto(s)
COVID-19/epidemiología , Pandemias , SARS-CoV-2 , Navegador Web , Número Básico de Reproducción/estadística & datos numéricos , COVID-19/psicología , COVID-19/transmisión , China/epidemiología , Biología Computacional , Emociones , Variación Genética , Genoma Viral , Humanos , Internet , Modelos Estadísticos , Pandemias/estadística & datos numéricos , SARS-CoV-2/genética , Estrés Psicológico , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA