Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 13(2)2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38247813

RESUMEN

(1) Background: The chemotherapeutic drug cisplatin exerts toxic side effects causing acute kidney injury. Mesenchymal stromal cells can ameliorate cisplatin-induced kidney injury. We hypothesize that the MSC secretome orchestrates the vicious cycle of injury and inflammation by acting on proximal tubule epithelial cells (PTECs) and macrophages individually, but further by counteracting their cellular crosstalk. (2) Methods: Conditioned medium (CM) from adipose stromal cells was used, first assessing its effect on cisplatin injury in PTECs. Second, the effects of cisplatin and the CM on macrophages were measured. Lastly, in an indirect co-culture system, the interplay between the two cell types was assessed. (3) Results: First, the CM rescued PTECs from cisplatin-induced apoptosis by reducing oxidative stress and expression of nephrotoxicity genes. Second, while cisplatin exerted only minor effects on macrophages, the CM skewed macrophage phenotypes to the anti-inflammatory M2-like phenotype and increased phagocytosis. Finally, in the co-culture system, the CM suppressed PTEC death by inhibiting apoptosis and nuclei fragmentation. The CM lowered TNF-α release, while cisplatin inhibited macrophage phagocytosis, PTECs, and the CM to a greater extent, thus enhancing it. The CM strongly dampened the inflammatory macrophage cytokine secretion triggered by PTECs. (4) Conclusions: ASC-CM surpasses the PTEC-macrophage crosstalk in cisplatin injury. The positive effects on reducing cisplatin cytotoxicity, on polarizing macrophages, and on fine-tuning cytokine secretion underscore MSCs' CM benefit to prevent kidney injury progression.


Asunto(s)
Cisplatino , Secretoma , Cisplatino/farmacología , Células Epiteliales , Macrófagos , Medios de Cultivo Condicionados/farmacología , Células del Estroma , Citocinas
2.
Biomed Pharmacother ; 167: 115624, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37783151

RESUMEN

Mesenchymal stromal cells (MSCs) have been reported to display efficacy in a variety of preclinical models, but without long-term engraftment, suggesting a role for secreted factors, such as MSC-derived extracellular vesicles (EVs). MSCs are known to elicit immunomodulatory effects, an important aspect of which is their ability to affect macrophage phenotype. However, it is not clear if these effects are mediated by MSC-derived EVs, or other factors secreted by the MSCs. Here, we use flow cytometry to assess the effects of human umbilical cord (hUC) MSC-derived EVs on the expression of pro-inflammatory (CD80) and anti-inflammatory (CD163) surface markers in human monocyte-derived macrophages (hMDMs). hUC-MSC-derived EVs did not change the surface marker expression of the hMDMs. In contrast, when hMDMs were co-incubated with hUC-MSCs in indirect co-cultures, changes were observed in the expression of CD14, CD80 and CD163, particularly in M1 macrophages, suggesting that soluble factors are necessary to elicit a shift in phenotype. However, even though EVs did not alter the surface marker expression of macrophages, they promoted angiogenesis and phagocytic capacity increased proportionally to increases in EV concentration. Taken together, these results suggest that hUC-MSC-derived EVs are not sufficient to alter macrophage phenotype and that additional MSC-derived factors are needed.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Humanos , Cordón Umbilical , Antiinflamatorios/metabolismo , Células Madre Mesenquimatosas/metabolismo , Vesículas Extracelulares/metabolismo , Macrófagos
3.
Stem Cell Res Ther ; 14(1): 120, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37143116

RESUMEN

BACKGROUND: Mesenchymal stromal cells (MSCs), commonly sourced from adipose tissue, bone marrow and umbilical cord, have been widely used in many medical conditions due to their therapeutic potential. Yet, the still limited understanding of the underlying mechanisms of action hampers clinical translation. Clinical potency can vary considerably depending on tissue source, donor attributes, but importantly, also culture conditions. Lack of standard procedures hinders inter-study comparability and delays the progression of the field. The aim of this study was A- to assess the impact on MSC characteristics when different laboratories, performed analysis on the same MSC material using harmonised culture conditions and B- to understand source-specific differences. METHODS: Three independent institutions performed a head-to-head comparison of human-derived adipose (A-), bone marrow (BM-), and umbilical cord (UC-) MSCs using harmonised culture conditions. In each centre, cells from one specific tissue source were isolated and later distributed across the network to assess their biological properties, including cell expansion, immune phenotype, and tri-lineage differentiation (part A). To assess tissue-specific function, angiogenic and immunomodulatory properties and the in vivo biodistribution were compared in one expert lab (part B). RESULTS: By implementing a harmonised manufacturing workflow, we obtained largely reproducible results across three independent laboratories in part A of our study. Unique growth patterns and differentiation potential were observed for each tissue source, with similar trends observed between centres. Immune phenotyping verified expression of typical MSC surface markers and absence of contaminating surface markers. Depending on the established protocols in the different laboratories, quantitative data varied slightly. Functional experiments in part B concluded that conditioned media from BM-MSCs significantly enhanced tubulogenesis and endothelial migration in vitro. In contrast, immunomodulatory studies reported superior immunosuppressive abilities for A-MSCs. Biodistribution studies in healthy mice showed lung entrapment after administration of all three types of MSCs, with a significantly faster clearance of BM-MSCs. CONCLUSION: These results show the heterogeneous behaviour and regenerative properties of MSCs as a reflection of intrinsic tissue-origin properties while providing evidence that the use of harmonised culture procedures can reduce but do not eliminate inter-lab and operator differences.


Asunto(s)
Técnicas de Cultivo de Célula , Células Madre Mesenquimatosas , Humanos , Animales , Ratones , Células Cultivadas , Distribución Tisular , Diferenciación Celular , Técnicas de Cultivo de Célula/métodos , Células Madre Mesenquimatosas/metabolismo , Proliferación Celular , Células de la Médula Ósea , Cordón Umbilical
4.
Front Immunol ; 14: 1228928, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38274791

RESUMEN

Acute kidney injury (AKI) is characterized by a rapid reduction in renal function and glomerular filtration rate (GFR). The broadly used anti-cancer chemotherapeutic agent cisplatin often induces AKI as an adverse drug side effect. Therapies targeted at the reversal of AKI and its potential progression to chronic kidney disease or end-stage renal disease are currently insufficiently effective. Mesenchymal stromal cells (MSCs) possess diverse immunomodulatory properties that confer upon them significant therapeutic potential for the treatment of diverse inflammatory disorders. Human dermal MSCs expressing ATP-Binding Cassette member B5 (ABCB5) have shown therapeutic efficacy in clinical trials in chronic skin wounds or recessive dystrophic epidermolysis bullosa. In preclinical studies, ABCB5+ MSCs have also shown to reverse metabolic reprogramming in polycystic kidney cells, suggesting a capacity for this cell subset to improve also organ function in kidney diseases. Here, we aimed to explore the therapeutic capacity of ABCB5+ MSCs to improve renal function in a preclinical rat model of cisplatin-induced AKI. First, the anti-apoptotic and immunomodulatory capacity was compared against research-grade adipose stromal cells (ASCs). Then, cross-species immunomodulatory capacity was checked, testing first inhibition of mitogen-driven peripheral blood mononuclear cells and then modulation of macrophage function. Finally, therapeutic efficacy was evaluated in a cisplatin AKI model. First, ABCB5+ MSCs suppressed cisplatin-induced apoptosis of human conditionally-immortalized proximal tubular epithelial cells in vitro, most likely by reducing oxidative stress. Second, ABCB5+ MSCs inhibited the proliferation of either human or rat peripheral blood mononuclear cells, in the human system via the Indoleamine/kynurenine axis and in the murine context via nitric oxide/nitrite. Third, ABCB5+ MSCs decreased TNF-α secretion after lipopolysaccharide stimulation and modulated phagocytosis and in both human and rat macrophages, involving prostaglandin E2 and TGF-ß1, respectively. Fourth, clinical-grade ABCB5+ MSCs grafted intravenously and intraperitoneally to a cisplatin-induced AKI murine model exerted modulatory effects on mRNA expression patterns toward an anti-inflammatory and pro-regenerative state despite an apparent lack of amelioration of renal damage at physiologic, metabolic, and histologic levels. Our results demonstrate anti-inflammatory and pro-regenerative effects of clinical grade ABCB5+ MSCs in vitro and in vivo and suggest potential therapeutic utility of this cell population for treatment or prevention of cisplatin chemotherapy-induced tissue toxicity.


Asunto(s)
Lesión Renal Aguda , Células Madre Mesenquimatosas , Humanos , Ratas , Ratones , Animales , Cisplatino/efectos adversos , Modelos Animales de Enfermedad , Leucocitos Mononucleares/metabolismo , Riñón/patología , Células Madre Mesenquimatosas/metabolismo , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/terapia , Lesión Renal Aguda/patología , ARN Mensajero/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP
5.
F1000Res ; 92020.
Artículo en Inglés | MEDLINE | ID: mdl-32148780

RESUMEN

Mesenchymal stromal cells (MSCs) are among of the most studied cell type for cellular therapy thanks to the ease of isolation, cultivation, and the high ex vivo expansion potential. In 2018, the European Medicines Agency finally granted the first marketing authorization for an MSC product. Despite the numerous promising results in preclinical studies, translation into routine practice still lags behind: therapeutic benefits of MSCs are not as satisfactory in clinical trial settings as they appear to be in preclinical models. The bench-to-bedside-and-back approach and careful evaluation of discrepancies between preclinical and clinical results have provided valuable insights into critical components of MSC manufacturing, their mechanisms of action, and how to evaluate and quality-control them. We sum up these past developments in the introductory section ("Mesenchymal stromal cells: name follows function"). From the huge amount of information, we then selected a few examples to illustrate challenges and opportunities to improve MSCs for clinical purposes. These include tissue origin of MSCs, MSC culture conditions, immune compatibility, and route of application and dosing. Finally, we add some information on MSC mechanisms of action and translation into potency assays and give an outlook on future perspectives raising the question of whether the future clinical product may be cell-based or cell-derived.


Asunto(s)
Células Madre Mesenquimatosas/citología , Técnicas de Cultivo de Célula , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos
6.
Immunobiology ; 224(2): 242-253, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30739804

RESUMEN

In a diabetic milieu high levels of reactive oxygen species (ROS) are induced. This contributes to the vascular complications of diabetes. Recent studies have shown that ROS formation is exacerbated in diabetic monocytes and macrophages due to a glycolytic metabolic shift. Macrophages are important players in the progression of diabetes and promote inflammation through the release of pro-inflammatory cytokines and proteases. Because ROS is an important mediator for the activation of pro-inflammatory signaling pathways, obesity and hyperglycemia-induced ROS production may favor induction of M1-like pro-inflammatory macrophages during diabetes onset and progression. ROS induces MAPK, STAT1, STAT6 and NFκB signaling, and interferes with macrophage differentiation via epigenetic (re)programming. Therefore, a comprehensive understanding of the impact of ROS on macrophage phenotype and function is needed in order to improve treatment of diabetes and its vascular complications. In the current comprehensive review, we dissect the role of ROS in macrophage polarization, and analyze how ROS production links metabolism and inflammation in diabetes and its complications. Finally, we discuss the contribution of ROS to the crosstalk between macrophages and endothelial cells in diabetic complications.


Asunto(s)
Diabetes Mellitus/etiología , Diabetes Mellitus/metabolismo , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Animales , Diabetes Mellitus/tratamiento farmacológico , Susceptibilidad a Enfermedades , Metabolismo Energético , Humanos , Inmunomodulación , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...