Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 3895, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37393275

RESUMEN

One of the core questions of quantum physics is how to reconcile the unitary evolution of quantum states, which is information-preserving and time-reversible, with evolution following the second law of thermodynamics, which, in general, is neither. The resolution to this paradox is to recognize that global unitary evolution of a multi-partite quantum state causes the state of local subsystems to evolve towards maximum-entropy states. In this work, we experimentally demonstrate this effect in linear quantum optics by simultaneously showing the convergence of local quantum states to a generalized Gibbs ensemble constituting a maximum-entropy state under precisely controlled conditions, while introducing an efficient certification method to demonstrate that the state retains global purity. Our quantum states are manipulated by a programmable integrated quantum photonic processor, which simulates arbitrary non-interacting Hamiltonians, demonstrating the universality of this phenomenon. Our results show the potential of photonic devices for quantum simulations involving non-Gaussian states.


Asunto(s)
Fotones , Física , Termodinámica , Entropía , Simulación por Computador
2.
Sci Adv ; 5(7): eaau9674, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31334346

RESUMEN

It is an open question how fast information processing can be performed and whether quantum effects can speed up the best existing solutions. Signal extraction, analysis, and compression in diagnostics, astronomy, chemistry, and broadcasting build on the discrete Fourier transform. It is implemented with the fast Fourier transform (FFT) algorithm that assumes a periodic input of specific lengths, which rarely holds true. A lesser-known transform, the Kravchuk-Fourier (KT), allows one to operate on finite strings of arbitrary length. It is of high demand in digital image processing and computer vision but features a prohibitive runtime. Here, we report a one-step computation of a fractional quantum KT. The quantum d-nary (qudit) architecture we use comprises only one gate and offers processing time independent of the input size. The gate may use a multiphoton Hong-Ou-Mandel effect. Existing quantum technologies may scale it up toward diverse applications.

3.
Phys Rev Lett ; 120(22): 220502, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29906153

RESUMEN

We demonstrate how boson sampling with photons of partial distinguishability can be expressed in terms of interference of fewer photons. We use this observation to propose a classical algorithm to simulate the output of a boson sampler fed with photons of partial distinguishability. We find conditions for which this algorithm is efficient, which gives a lower limit on the required indistinguishability to demonstrate a quantum advantage. Under these conditions, adding more photons only polynomially increases the computational cost to simulate a boson sampling experiment.

4.
Phys Rev Lett ; 118(16): 163602, 2017 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-28474918

RESUMEN

We introduce a method for the verification of nonclassical light which is independent of the complex interaction between the generated light and the material of the detectors. This is accomplished by means of a multiplexing arrangement. Its theoretical description yields that the coincidence statistics of this measurement layout is a mixture of multinomial distributions for any classical light field and any type of detector. This allows us to formulate bounds on the statistical properties of classical states. We apply our directly accessible method to heralded multiphoton states which are detected with a single multiplexing step only and two detectors, which are in our work superconducting transition-edge sensors. The nonclassicality of the generated light is verified and characterized through the violation of the classical bounds without the need for characterizing the used detectors.

5.
Phys Rev A (Coll Park) ; 96(1)2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29670949

RESUMEN

In Sperling et al. [Phys. Rev. Lett. 118, 163602 (2017)], we introduced and applied a detector-independent method to uncover nonclassicality. Here, we extend those techniques and give more details on the performed analysis. We derive a general theory of the positive-operator-valued measure that describes multiplexing layouts with arbitrary detectors. From the resulting quantum version of a multinomial statistics, we infer nonclassicality probes based on a matrix of normally ordered moments. We discuss these criteria and apply the theory to our data which are measured with superconducting transition-edge sensors. Our experiment produces heralded multiphoton states from a parametric down-conversion light source. We show that the known notions of sub-Poisson and sub-binomial light can be deduced from our general approach, and we establish the concept of sub-multinomial light, which is shown to outperform the former two concepts of nonclassicality for our data.

6.
Nano Lett ; 15(7): 4541-5, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26087352

RESUMEN

We probe the local detection efficiency in a nanowire superconducting single-photon detector along the cross-section of the wire with a far subwavelength resolution. We experimentally find a strong variation in the local detection efficiency of the device. We demonstrate that this effect explains previously observed variations in NbN detector efficiency as a function of device geometry.

7.
Phys Rev Lett ; 112(11): 117604, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24702419

RESUMEN

We report an experimental test of the photodetection mechanism in a nanowire superconducting single photon detector. Detector tomography allows us to explore the 0.8-8 eV energy range via multiphoton excitations. High accuracy results enable a detailed comparison of the experimental data with theories for the mechanism of photon detection. We show that the temperature dependence of the efficiency of the superconducting single photon detector is determined not by the critical current but by the current associated with vortex unbinding. We find that both quasiparticle diffusion and vortices play a role in the detection event.

8.
Opt Express ; 20(3): 2806-13, 2012 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-22330516

RESUMEN

We present an experimental method to characterize multi-photon detectors with a small overall detection efficiency. We do this by separating the nonlinear action of the multiphoton detection event from linear losses in the detector. Such a characterization is a necessary step for quantum information protocols with single and multiphoton detectors and can provide quantitative information to understand the underlying physics of a given detector. This characterization is applied to a superconducting multiphoton nanodetector, consisting of an NbN nanowire with a bowtie-shaped subwavelength constriction. Depending on the bias current, this detector has regimes with single and multiphoton sensitivity. We present the first full experimental characterization of such a detector.


Asunto(s)
Conductometría/instrumentación , Nanotecnología/instrumentación , Niobio/química , Fotometría/instrumentación , Tomografía/instrumentación , Transductores , Conductividad Eléctrica , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Niobio/efectos de la radiación , Fotones
9.
Phys Rev Lett ; 104(13): 133601, 2010 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-20481884

RESUMEN

We study experimentally the fundamental limits of sensitivity of an atomic radio-frequency magnetometer. First, we apply an optimal sequence of state preparation, evolution, and the backaction evading measurement to achieve a nearly projection noise limited sensitivity. We furthermore experimentally demonstrate that Einstein-Podolsky-Rosen entanglement of atoms generated by a measurement enhances the sensitivity to pulsed magnetic fields. We demonstrate this quantum limited sensing in a magnetometer utilizing a truly macroscopic ensemble of 1.5x10(12) atoms which allows us to achieve subfemtotesla/square root(Hz) sensitivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...