Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FASEB J ; 37(5): e22886, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37043392

RESUMEN

Gigaxonin is an adaptor protein for E3 ubiquitin ligase substrates. It is necessary for ubiquitination and degradation of intermediate filament (IF) proteins. Giant axonal neuropathy is a pathological condition caused by mutations in the GAN gene that encodes gigaxonin. This condition is characterized by abnormal accumulation of IFs in both neuronal and non-neuronal cells; however, it is unclear what causes IF aggregation. In this work, we studied the dynamics of IFs using their subunits tagged with a photoconvertible protein mEOS 3.2. We have demonstrated that the loss of gigaxonin dramatically inhibited transport of IFs along microtubules by the microtubule motor kinesin-1. This inhibition was specific for IFs, as other kinesin-1 cargoes, with the exception of mitochondria, were transported normally. Abnormal distribution of IFs in the cytoplasm can be rescued by direct binding of kinesin-1 to IFs, demonstrating that transport inhibition is the primary cause for the abnormal IF distribution. Another effect of gigaxonin loss was a more than 20-fold increase in the amount of soluble vimentin oligomers in the cytosol of gigaxonin knock-out cells. We speculate that these oligomers saturate a yet unidentified adapter that is required for kinesin-1 binding to IFs, which might inhibit IF transport along microtubules causing their abnormal accumulation.


Asunto(s)
Proteínas del Citoesqueleto , Neuropatía Axonal Gigante , Humanos , Proteínas del Citoesqueleto/metabolismo , Filamentos Intermedios/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Neuropatía Axonal Gigante/genética , Neuropatía Axonal Gigante/metabolismo , Neuropatía Axonal Gigante/patología , Microtúbulos/metabolismo
2.
Cell Death Dis ; 13(2): 172, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197459

RESUMEN

A Disintegrin and Metalloproteinase with ThromboSpondin motif (ADAMTS) 5 functions as an anti-angiogenic and anti-cancer protein independent of its metalloproteinase activity. Both full-length ADAMTS5 and TS5-p45, the autocatalytically cleaved C-terminal 45 kDa truncate of ADAMTS5, inhibits angiogenesis, and induces endothelial cell (EC) apoptosis. However, how ADAMTS5 triggers EC apoptosis remains unclear. This work shows that caspase-8 (Cas-8) and caspase-9 (Cas-9) are involved in TS5-p45-induced EC apoptosis. We identify cell surface nucleolin (NCL) as a novel high-affinity receptor for TS5-p45 in ECs, mediating TS5-p45's cell surface binding and pro-apoptotic function. We show that the central RNA-binding domain (RBD) of NCL is essential and sufficient for its binding to TS5-p45. Upon interacting with EC surface NCL, TS5-p45 is internalized through clathrin- and caveolin-dependent endocytosis and trafficked to the nucleus via late endosomes (LEs). We demonstrate that the nuclear trafficking of TS5-p45 is important for its pro-apoptotic activity as disruption of LE membrane integrity with an endosomolytic peptide suppressed both nuclear trafficking and pro-apoptotic activity of TS5-p45. Through cell surface biotinylation, we revealed that cell surface NCL shuttles extracellular TS5-p45 to the nucleus to mediate apoptosis. Furthermore, blocking the importin α1/ß1 receptor hindered the nuclear trafficking of TS5-p45, suggesting the involvement of the nuclear importing machinery for this nuclear translocation. RNA-seq identified many apoptosis-related genes that are differentially expressed at least two-fold in TS5-p45-treated ECs, with 10 of them qRT-PCR-validated and at least 5 of these genes potentially contributing to TS5-p45-NCL-induced apoptosis. Altogether, our work identifies NCL as a novel cell surface receptor for ADAMTS5 and demonstrates the critical role of NCL-mediated internalization and nuclear trafficking for ADAMTS5-induced EC apoptosis. These findings reveal novel mechanistic insights of the secreted metalloproteinase ADAMTS5 in angiogenesis inhibition.


Asunto(s)
Fosfoproteínas , Proteínas de Unión al ARN , Apoptosis , Células Endoteliales/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Nucleolina
3.
Cancers (Basel) ; 10(6)2018 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-29891754

RESUMEN

Inhibiting tumor angiogenesis is a well-established approach for anticancer therapeutic development. A Disintegrin-like and Metalloproteinase with ThromboSpondin Motifs 5 (ADAMTS5) is a secreted matrix metalloproteinase in the ADAMTS family that also functions as an anti-angiogenic/anti-tumorigenic molecule. Its anti-angiogenic/anti-tumorigenic function is independent from its proteinase activity, but requires its first thrombospondin type 1 repeat (TSR1). However, it is not known if recombinant TSR1 (rTSR1) can function as an anticancer therapeutic. In this report, we expressed and purified a 75-residue recombinant TSR1 polypeptide from E. coli and investigated its ability to function as an anticancer therapeutic in mice. We demonstrate that rTSR1 is present in the blood circulation as well as in the tumor tissue at 15 min post intraperitoneal injection. Intraperitoneal delivery of rTSR1 potently suppressed subcutaneous B16F10 melanoma growth as a single agent, accompanied by diminished tumor angiogenesis, increased apoptosis, and reduced cell proliferation in the tumor tissue. Consistently, rTSR1 dose-dependently induced the apoptosis of cultured human umbilical vein endothelial cells (HUVECs) in a caspase-dependent manner. This work indicates that rTSR1 of ADAMTS5 can function as a potent anticancer therapy in mice. It thus has the potential to be further developed into an anticancer drug.

4.
J Pept Sci ; 20(11): 837-49, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25044713

RESUMEN

Despite the rigorous research on abnormal angiogenesis, there is a persistent need for the development of new and efficient therapies against angiogenesis-related diseases. The role of Lysyl oxidase (LOX) in angiogenesis and cancer has been established in prior studies. Copper is known to induce the synthesis of LOX, and hence regulates its activity. Hypoxia-induced metastasis is dependent on LOX expression and activity. It has been believed that the inhibition of LOX would be a therapeutic strategy to inhibit angiogenesis. To explore this, we designed peptides (M peptides) from the copper-binding region of LOX and hypothesized them to modulate LOX. The peptides were characterized, and their copper-binding ability was confirmed by mass spectrometry. The M peptides were found to reduce the levels of intracellular copper when the cells were co-treated with copper. The peptides showed promising effect on aortic LOX, recombinant human LOX and LOX produced by human umbilical vein endothelial cells (HUVECs). The study also explores the effect of these peptides on copper and hypoxia-stimulated angiogenic response in HUVECs. It was found that the M peptides inhibited copper/hypoxia-induced LOX activity and inhibited stimulated HUVEC tube formation and migration. This clearly indicated the potential of M peptides in inhibiting angiogenesis, highlighting their role in the formulation of drugs for the same.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Cobre/metabolismo , Proteína-Lisina 6-Oxidasa/antagonistas & inhibidores , Proteína-Lisina 6-Oxidasa/química , Secuencia de Aminoácidos , Sitios de Unión , Hipoxia de la Célula , Movimiento Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Histidina/química , Células Endoteliales de la Vena Umbilical Humana , Humanos , Espectrometría de Masas , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Estructura Secundaria de Proteína , Proteína-Lisina 6-Oxidasa/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...