Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 127(23): 5353-5359, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37267598

RESUMEN

We measure the quantum efficiency (QE) of individual dibenzoterrylene (DBT) molecules embedded in p-dichlorobenzene at cryogenic temperatures. To achieve this, we combine two distinct methods based on the maximal photon emission and on the power required to saturate the zero-phonon line to compensate for uncertainties in some key system parameters. We find that the outcomes of the two approaches are in good agreement for reasonable values of the parameters involved, reporting a large fraction of molecules with QE values above 50%, with some exceeding 70%. Furthermore, we observe no correlation between the observed lower bound on the QE and the lifetime of the molecule, suggesting that most of the molecules have a QE exceeding the established lower bound. This confirms the suitability of DBT for quantum optics experiments. In light of previous reports of low QE values at ambient conditions, our results hint at the possibility of a strong temperature dependence of the QE.

2.
Phys Rev Lett ; 126(13): 133602, 2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33861100

RESUMEN

We present efficient evanescent coupling of single organic molecules to a gallium phosphide (GaP) subwavelength waveguide (nanoguide) decorated with microelectrodes. By monitoring their Stark shifts, we reveal that the coupled molecules experience fluctuating electric fields. We analyze the spectral dynamics of different molecules over a large range of optical powers in the nanoguide to show that these fluctuations are light-induced and local. A simple model is developed to explain our observations based on the optical activation of charges at an estimated mean density of 2.5×10^{22} m^{-3} in the GaP nanostructure. Our work showcases the potential of organic molecules as nanoscopic sensors of the electric charge as well as the use of GaP nanostructures for integrated quantum photonics.

3.
Phys Rev Lett ; 125(10): 103603, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32955324

RESUMEN

Extinction of light by material particles stems from losses incurred by absorption or scattering. The extinction cross section is usually treated as an additive quantity, leading to the exponential laws that govern the macroscopic attenuation of light. In this Letter, we demonstrate that the extinction cross section of a large gold nanoparticle can be substantially reduced-i.e., the particle becomes more transparent-if a single molecule is placed in its near field. This partial cloaking effect results from a coherent plasmonic interaction between the molecule and the nanoparticle, whereby each of them acts as a nanoantenna to modify the radiative properties of the other.

4.
Nat Commun ; 10(1): 1880, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015474

RESUMEN

Organic compounds present a powerful platform for nanotechnological applications. In particular, molecules suitable for optical functionalities such as single photon generation and energy transfer have great promise for complex nanophotonic circuitry due to their large variety of spectral properties, efficient absorption and emission, and ease of synthesis. Optimal integration, however, calls for control over position and orientation of individual molecules. While various methods have been explored for reaching this regime in the past, none satisfies requirements necessary for practical applications. Here, we present direct non-contact electrohydrodynamic nanoprinting of a countable number of photostable and oriented molecules in a nanocrystal host with subwavelength positioning accuracy. We demonstrate the power of our approach by writing arbitrary patterns and controlled coupling of single molecules to the near field of optical nanostructures. Placement precision, high yield and fabrication facility of our method open many doors for the realization of novel nanophotonic devices.

5.
Nano Lett ; 17(8): 4941-4945, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28671833

RESUMEN

The feasibility of many proposals in nanoquantum-optics depends on the efficient coupling of photons to individual quantum emitters, the possibility to control this interaction on demand, and the scalability of the experimental platform. To address these issues, we report on chip-based systems made of one-dimensional subwavelength dielectric waveguides (nanoguides) and polycyclic aromatic hydrocarbon molecules. We discuss the design and fabrication requirements, present data on extinction spectroscopy of single molecules coupled to a nanoguide mode, and show how an external optical beam can switch the propagation of light via a nonlinear optical process. The presented architecture paves the way for the investigation of many-body phenomena and polaritonic states and can be readily extended to more complex geometries for the realization of quantum integrated photonic circuits.

6.
J Phys Chem Lett ; 7(9): 1604-9, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27082249

RESUMEN

Nanoantennas are well-known for their effective role in fluorescence enhancement, both in excitation and emission. Enhancements of 3-4 orders of magnitude have been reported. Yet in practice, the photon emission is limited by saturation due to the time that a molecule spends in singlet and especially triplet excited states. The maximal photon stream restricts the attainable enhancement. Furthermore, the total number of photons emitted is limited by photobleaching. The limited brightness and observation time are a drawback for applications, especially in biology. Here we challenge this photon limit, showing that nanoantennas can actually increase both saturation intensity and photostability. So far, this limit-shifting role of nanoantennas has hardly been explored. Specifically, we demonstrate that single light-harvesting complexes, under saturating excitation conditions, show over a 50-fold antenna-enhanced photon emission stream, with 10-fold more total photons, up to 10(8) detected photons, before photobleaching. This work shows yet another facet of the great potential of nanoantennas in the world of single-molecule biology.

7.
Faraday Discuss ; 178: 237-52, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25711923

RESUMEN

Optical nanoantennas have revolutionised the way we manipulate single photons emitted by individual light sources in a nanostructured photonic environment. Complex plasmonic architectures allow for multiscale light control by shortening or stretching the light wavelength for a fixed operating frequency, meeting the size of the emitter and that of propagating modes. Here, we study self-assembled semi-continuous gold films and lithographic gold networks characterised by large local density of optical state (LDOS) fluctuations around the electrical percolation threshold, a regime where the surface is characterised by large metal clusters with fractal topology. We study the formation of plasmonic networks and their effect on light emission from embedded fluorescent probes in these systems. Through fluorescence dynamics experiments we discuss the role of global long-range interactions linked to the degree of percolation and to the network fractality, as well as the local near-field contributions coming from the local electro-magnetic fields and the topology. Our experiments indicate that local properties dominate the fluorescence modification.

8.
Phys Chem Chem Phys ; 16(45): 24739-46, 2014 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-25315613

RESUMEN

Nanoantennae show potential for photosynthesis research for two reasons; first by spatially confining light for experiments which require high spatial resolution, and second by enhancing the photon emission of single light-harvesting complexes. For effective use of nanoantennae a detailed understanding of the interaction between the nanoantenna and the light-harvesting complex is required. Here we report how the excitation and emission of multiple purple bacterial LH2s (light-harvesting complex 2) are controlled by single gold nanorod antennae. LH2 complexes were chemically attached to such antennae, and the antenna length was systematically varied to tune the resonance with respect to the LH2 absorption and emission. There are three main findings. (i) The polarization of the LH2 emission is fully controlled by the resonant nanoantenna. (ii) The largest fluorescence enhancement, of 23 times, is reached for excitation with light at λ = 850 nm, polarized along the long antenna-axis of the resonant antenna. The excitation enhancement is found to be 6 times, while the emission efficiency is increased 3.6 times. (iii) The fluorescence lifetime of LH2 depends strongly on the antenna length, with shortest lifetimes of ∼40 ps for the resonant antenna. The lifetime shortening arises from an 11 times resonant enhancement of the radiative rate, together with a 2-3 times increase of the non-radiative rate, compared to the off-resonant antenna. The observed length dependence of radiative and non-radiative rate enhancement is in good agreement with simulations. Overall this work gives a complete picture of how the excitation and emission of multi-pigment light-harvesting complexes are influenced by a dipole nanoantenna.


Asunto(s)
Complejos de Proteína Captadores de Luz/química , Nanotecnología , Oro/química , Nanotubos/química , Fotones , Fotosíntesis , Rhodopseudomonas/enzimología
9.
Nat Commun ; 5: 4236, 2014 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-24953833

RESUMEN

The nature of the highly efficient energy transfer in photosynthetic light-harvesting complexes is a subject of intense research. Unfortunately, the low fluorescence efficiency and limited photostability hampers the study of individual light-harvesting complexes at ambient conditions. Here we demonstrate an over 500-fold fluorescence enhancement of light-harvesting complex 2 (LH2) at the single-molecule level by coupling to a gold nanoantenna. The resonant antenna produces an excitation enhancement of circa 100 times and a fluorescence lifetime shortening to ~20 ps. The radiative rate enhancement results in a 5.5-fold-improved fluorescence quantum efficiency. Exploiting the unique brightness, we have recorded the first photon antibunching of a single light-harvesting complex under ambient conditions, showing that the 27 bacteriochlorophylls coordinated by LH2 act as a non-classical single-photon emitter. The presented bright antenna-enhanced LH2 emission is a highly promising system to study energy transfer and the role of quantum coherence at the level of single complexes.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Nanoestructuras/química , Rhodopseudomonas/metabolismo , Proteínas Bacterianas/genética , Transferencia de Energía , Fluorescencia , Oro/química , Complejos de Proteína Captadores de Luz/genética , Fotones , Rhodopseudomonas/química , Rhodopseudomonas/genética
10.
Nano Lett ; 14(7): 4078-82, 2014 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-24927109

RESUMEN

The ultrafast coherent control of light localization in resonant plasmonic nanostructures is intricately related to the phase response of the involved plasmon resonances. In this work, we exploit the second harmonic signal generated by single optical nanoantennas subject to broadband phase-controlled femtosecond pulses to study and tailor the coherent resonance response. Our results reveal that both the spectral phase and the amplitude components associated with the plasmon resonance of arbitrary individual nanoantennas can be accurately determined.

11.
Nano Lett ; 14(5): 2636-41, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24730454

RESUMEN

Label-free biosensing based on metallic nanoparticles supporting localized surface plasmon resonances (LSPR) has recently received growing interest (Anker, J. N., et al. Nat. Mater. 2008, 7, 442-453). Besides its competitive sensitivity (Yonzon, C. R., et al. J. Am. Chem. Soc. 2004, 126, 12669-12676; Svendendahl, M., et al. Nano Lett. 2009, 9, 4428-4433) when compared to the surface plasmon resonance (SPR) approach based on extended metal films, LSPR biosensing features a high-end miniaturization potential and a significant reduction of the interrogation device bulkiness, positioning itself as a promising candidate for point-of-care diagnostic and field applications. Here, we present the first, paralleled LSPR lab-on-a-chip realization that goes well beyond the state-of-the-art, by uniting the latest advances in plasmonics, nanofabrication, microfluidics, and surface chemistry. Our system offers parallel, real-time inspection of 32 sensing sites distributed across 8 independent microfluidic channels with very high reproducibility/repeatability. This enables us to test various sensing strategies for the detection of biomolecules. In particular we demonstrate the fast detection of relevant cancer biomarkers (human alpha-feto-protein and prostate specific antigen) down to concentrations of 500 pg/mL in a complex matrix consisting of 50% human serum.


Asunto(s)
Biomarcadores de Tumor/sangre , Técnicas Biosensibles , Neoplasias/sangre , Antígeno Prostático Específico/sangre , Humanos , Dispositivos Laboratorio en un Chip , Nanopartículas del Metal/química , Técnicas Analíticas Microfluídicas , Resonancia por Plasmón de Superficie , alfa-Fetoproteínas
12.
Nano Lett ; 14(3): 1520-5, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24571659

RESUMEN

Nanopositioning of single quantum emitters to control their coupling to integrated photonic structures is a crucial step in the fabrication of solid-state quantum optics devices. We use the optical near-field enhancement produced by nanofabricated gold antennas subject to near-infrared illumination to deterministically trap and position single nanodiamonds (NDs) hosting nitrogen-vacancy (NV) centers. The positioning of the NDs at the antenna regions of maximum field intensity is first characterized using both fluorescence and electron microscopy imaging. We further study the interaction between the nanoantenna and the delivered NV center by analyzing its change in fluorescence lifetime, which is driven by the increase in the local density of optical states at the trapping positions. Additionally, the plasmonic enhancement of the near-field intensity allows us to optically control the NV excited lifetime using relatively low NIR illumination intensities, some 20 times lower than in the absence of the antennas.

13.
Nat Nanotechnol ; 8(3): 175-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23396312

RESUMEN

Nitrogen vacancy (NV) centres in diamond are promising elemental blocks for quantum optics, spin-based quantum information processing and high-resolution sensing. However, fully exploiting the capabilities of these NV centres requires suitable strategies to accurately manipulate them. Here, we use optical tweezers as a tool to achieve deterministic trapping and three-dimensional spatial manipulation of individual nanodiamonds hosting a single NV spin. Remarkably, we find that the NV axis is nearly fixed inside the trap and can be controlled in situ by adjusting the polarization of the trapping light. By combining this unique spatial and angular control with coherent manipulation of the NV spin and fluorescence lifetime measurements near an integrated photonic system, we demonstrate individual optically trapped NV centres as a novel route for both three-dimensional vectorial magnetometry and sensing of the local density of optical states.


Asunto(s)
Electrones , Nitrógeno/química , Fotones , Nanotecnología/tendencias , Puntos Cuánticos
14.
Opt Express ; 20(3): 2354-62, 2012 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-22330474

RESUMEN

In this work we report on the characteristics of an electro-optical dielectric-loaded surface plasmon polariton waveguide ring resonator. By doping the dielectric host matrix with an electro-optical material and designing an appropriate set of planar electrodes, we measured a 16% relative change of transmission upon application of a controlled electric field. We have analyzed the temporal response of the device and conclude that electrostriction of the host matrix is playing a dominating role in the transmission response.


Asunto(s)
Electrónica/instrumentación , Dispositivos Ópticos , Resonancia por Plasmón de Superficie/instrumentación , Telecomunicaciones/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo
15.
Philos Trans A Math Phys Eng Sci ; 369(1950): 3497-509, 2011 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-21807724

RESUMEN

We investigate the nonlinear optical response of a noble metal surface. We derive the components of the third-order nonlinear susceptibility and determine an absolute value of χ((3))≈0.2 nm(2) V(-2), a value that is more than two orders of magnitude larger than the values found for typical nonlinear laser crystals. Using nonlinear four-wave mixing (4WM) with incident laser pulses of frequencies ω(1) and ω(2), we generate fields oscillating at the nonlinear frequency ω(4WM)=2ω(1)-ω(2). We identify and discuss three distinct regimes: (i) a regime where the 4WM field is propagating, (ii) a regime where it is evanescent, and (iii) a regime where the nonlinear response couples to surface plasmon polaritons.

16.
Opt Express ; 19(3): 1777-85, 2011 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-21368992

RESUMEN

While metals benefit from a strong nonlinearity at optical frequencies, its practical exploitation is limited by the weak penetration of the electric field within the metal and the screening by the surface charges. It is shown here that this limitation can be bypassed by depositing a thin dielectric layer on the metal surface or, alternatively, using a thin metal film. This strategy enables us to enhance four-wave mixing in metals by up to four orders of magnitude.


Asunto(s)
Membranas Artificiales , Metales/química , Modelos Químicos , Resonancia por Plasmón de Superficie/métodos , Simulación por Computador , Luz , Ensayo de Materiales , Dinámicas no Lineales , Dispersión de Radiación , Propiedades de Superficie
17.
Opt Express ; 19(25): 25222-9, 2011 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-22273913

RESUMEN

We demonstrate both experimentally and numerically a compact and efficient, optically tuneable plasmonic component utilizing a surface plasmon polariton ring resonator with nonlinearity based on trans-cis isomerization in a polymer material. We observe more than 3-fold change between high and low transmission states of the device at milliwatt control powers (∼100 W/cm2 by intensity), with the performance limited by switching speed of the material. Such plasmonic components can be employed in optically programmable and reconfigurable integrated photonic circuitry.


Asunto(s)
Diseño Asistido por Computadora , Modelos Teóricos , Dispositivos Ópticos , Polímeros/química , Procesamiento de Señales Asistido por Computador/instrumentación , Resonancia por Plasmón de Superficie/instrumentación , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Fotones , Dispersión de Radiación
18.
Nano Lett ; 10(12): 5076-9, 2010 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-21080663

RESUMEN

Dark-field microscopy is a background-free imaging method that provides high sensitivity and a large signal-to-noise ratio. It finds application in nanoscale detection, biophysics and biosensing, particle tracking, single molecule spectroscopy, X-ray imaging, and failure analysis of materials. In dark-field microscopy, the unscattered light path is typically excluded from the angular range of signal detection. This restriction reduces the numerical aperture and affects the resolution. Here we introduce a nonlinear dark-field scheme that overcomes this restriction. Two laser beams of frequencies ω1 and ω2 are used to illuminate a sample surface and to generate a purely evanescent field at the four-wave mixing (4WM) frequency ω4wm = 2ω1 - ω2. The evanescent 4WM field scatters at sample features and generates radiation that is detected by standard far-field optics. This nonlinear dark-field scheme works with samples of any material and is compatible with applications ranging from biological imaging to failure analysis.

19.
Nano Lett ; 10(11): 4450-55, 2010 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-20957982

RESUMEN

We present resonant dielectric structures exhibiting arbitrarily large optical field enhancement, only limited by fabrication imperfections. Three different arrangements are investigated, based upon dielectric waveguides, dielectric particle arrays, and a combination of these two structures. Experimental confirmation of enhancement in a waveguide resonator is achieved by measuring the luminescence of quantum dots dispersed in the hot optical region of the structure. The performance of these systems can be readily controlled by simply changing geometrical parameters, which allows obtaining remarkable values of the intensity enhancement approaching 105 relative to the incident intensity over large volumes under feasible experimental conditions. This opens new avenues for all-optical switching and biosensing.


Asunto(s)
Mediciones Luminiscentes/instrumentación , Puntos Cuánticos , Refractometría/instrumentación , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Dispersión de Radiación
20.
Opt Express ; 18(15): 15757-68, 2010 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-20720959

RESUMEN

One of the key challenges in current research into electromagnetic cloaking is to achieve invisibility at optical frequencies and over an extended bandwidth. There has been significant progress towards this using the idea of cloaking by sweeping under the carpet of Li and Pendry. Here, we show that we can harness surface plasmon polaritons at a metal surface structured with a dielectric material to obtain a unique control of their propagation. We exploit this control to demonstrate both theoretically and experimentally cloaking over an unprecedented bandwidth (650-900 nm). Our non-resonant plasmonic metamaterial is designed using transformational optics extended to plasmonics and allows a curved reflector to mimic a flat mirror. Our theoretical predictions are validated by experiments mapping the surface light intensity at a wavelength of 800 nm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...