Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Infect Dis ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39303151

RESUMEN

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are severe complications that can occur in infections caused by any Plasmodium species. Due to the high lethality rate and the lack of specific treatment for ALI/ARDS, studies aimed at understanding and searching for treatment strategies for such complications have been fundamental. Here, we investigated the protective role of dietary supplementation with DHA-rich fish oil against lung damage induced by Plasmodium berghei ANKA in a murine model. Our results demonstrated that alveolar vascular damage, lung edema, and histopathological alterations were significantly reduced in mice that received dietary supplementation compared to those that did not receive the supplementation. Furthermore, a significant reduction in the number of CD8+ T lymphocytes, in addition to reduced infiltration of inflammatory cells in the bronchoalveolar lavage fluid was also observed. High levels of IL-10, but not of TNF-α and IFN-γ, were also observed in infected mice that received the supplementation, along with a reduction in local oxidative stress. Together, the data suggest that dietary supplementation with DHA-rich fish oil in malarial endemic areas may help reduce lung damage resulting from the infection, thus preventing worsening of the condition.

2.
J Nutr Biochem ; 123: 109492, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37866427

RESUMEN

Every year, thousands of children, particularly those under 5 years old, die because of cerebral malaria (CM). Following conventional treatment, approximately 25% of surviving individuals have lifelong severe neurocognitive sequelae. Therefore, improved conventional therapies or effective alternative therapies that prevent the severe infection are crucial. Omega-3 (Ω-3) polyunsaturated fatty acids (PUFAs) are known to have antioxidative and anti-inflammatory effects and protect against diverse neurological disorders, including Alzheimer's and Parkinson's diseases. However, little is known regarding the effects of Ω-3 PUFAs against parasitic infections. In this study, C57BL/6 mice received supplemental treatment of a fish oil rich in the Ω-3 PUFA, docosahexaenoic acid (DHA), which was started 15 days prior to infection with Plasmodium berghei ANKA and was maintained until the end of the study. Animals treated with the highest doses of DHA, 3.0 and 6.0 g/kg body weight, had 60 and 80% chance of survival, respectively, while all nontreated mice died by the 7th day postinfection due to CM. Furthermore, the parasite load during the critical period for CM development (5th to 11th day postinfection) was controlled in treated mice. However, after this period all animals developed high levels of parasitemia until the 20th day of infection. DHA treatment also effectively reduced blood-brain barrier (BBB) damage and brain edema and completely prevented brain hemorrhage and vascular occlusion. A strong anti-inflammatory profile was observed in the brains of DHA-treated mice, as well as, an increased number of neutrophil and reduced number of CD8+ T leukocytes in the spleen. Thus, this is the first study to demonstrate that the prophylactic use of DHA-rich fish oil exerts protective effects against experimental CM, reducing the mechanical and immunological events caused by the P. berghei ANKA infection.


Asunto(s)
Ácidos Grasos Omega-3 , Malaria Cerebral , Niño , Humanos , Ratones , Animales , Preescolar , Aceites de Pescado/farmacología , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/uso terapéutico , Malaria Cerebral/prevención & control , Malaria Cerebral/tratamiento farmacológico , Ratones Endogámicos C57BL , Ácidos Grasos Omega-3/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
3.
Chem Biol Interact ; 355: 109848, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35149084

RESUMEN

Chloroquine (CQ) was the most effective and widely used drug for the prophylaxis and treatment of severe and non-severe malaria. Although its prophylactic use has led to resistance to P. falciparum in all endemic countries, CQ still remains the drug of choice for the treatment of vivax malaria. Otherwise, the speed in which parasite resistance to available antimalarials rises and spreads in endemic regions points to the urgent need for the development of new antimalarials. Quinoline derivatives have been used as a tool in the search for new drugs and were investigated in the present study in an attempt to produce a HIT compound to avoid the cerebral malarial (CM). Seven compounds were synthesized, including three quinoline derivate salts. The cytotoxicity and antiplasmodial activity were assayed in vitro, highlighting compound 3 as a HIT, which also showed interaction with ferriprotoporphyrin IX similarly to CQ. Physicochemical and pharmacokinetic properties of absorption were found to be favorable when analyzed in silico. The in vivo assays, using the experimental cerebral malaria (ECM) model, showed important values of parasite growth inhibition on the 7th day-post infection (Q15 15 mg/kg: 76.9%, Q30 30 mg/kg: 90,1% and Q50 50 mg/kg: 92,9%). Compound 3 also showed significant protection against the development of CM, besides hepatic and renal parameters better than CQ. In conclusion, this quinoline derivative demonstrated promising activity for the treatment of malaria and was able to avoid the development of severe malaria in mice.


Asunto(s)
Antimaláricos/uso terapéutico , Malaria Cerebral/tratamiento farmacológico , Plasmodium falciparum/fisiología , Quinolinas/uso terapéutico , Animales , Antimaláricos/química , Antimaláricos/farmacología , Encéfalo/parasitología , Encéfalo/patología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Humanos , Malaria Cerebral/mortalidad , Ratones , Ratones Endogámicos C57BL , Plasmodium falciparum/efectos de los fármacos , Quinolinas/química , Quinolinas/farmacología , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA