Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1297175, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022587

RESUMEN

Following the success of cancer immunotherapy using large molecules against immune checkpoint inhibitors, the concept of using small molecules to interfere with intracellular negative regulators of anti-tumor immune responses has emerged in recent years. The main targets for small molecule drugs currently include enzymes of negative feedback loops in signaling pathways of immune cells and proteins that promote immunosuppressive signals within the tumor microenvironment. In the adaptive immune system, negative regulators of T cell receptor signaling (MAP4K1, DGKα/ζ, CBL-B, PTPN2, PTPN22, SHP1), co-receptor signaling (CBL-B) and cytokine signaling (PTPN2) have been preclinically validated as promising targets and initial clinical trials with small molecule inhibitors are underway. To enhance innate anti-tumor immune responses, inhibitory immunomodulation of cGAS/STING has been in the focus, and inhibitors of ENPP1 and TREX1 have reached the clinic. In addition, immunosuppressive signals via adenosine can be counteracted by CD39 and CD73 inhibition, while suppression via intratumoral immunosuppressive prostaglandin E can be targeted by EP2/EP4 antagonists. Here, we present the status of the most promising small molecule drug candidates for cancer immunotherapy, all residing relatively early in development, and the potential of relevant biomarkers.


Asunto(s)
Neoplasias , Proteína Tirosina Fosfatasa no Receptora Tipo 2 , Humanos , Inmunoterapia , Neoplasias/tratamiento farmacológico , Inmunomodulación , Biomarcadores , Microambiente Tumoral , Proteína Tirosina Fosfatasa no Receptora Tipo 22
2.
Comput Struct Biotechnol J ; 20: 4717-4732, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147669

RESUMEN

We developed a bioinformatics-led substrate discovery workflow to expand the known substrate repertoire of MALT1. Our approach, termed GO-2-Substrates, integrates protein function information, including GO terms from known substrates, with protein sequences to rank substrate candidates by similarity. We applied GO-2-Substrates to MALT1, a paracaspase and master regulator of NF-κB signalling in adaptive immune responses. With only 12 known substrates, the evolutionarily conserved paracaspase functions and phenotypes of Malt1 -/- mice strongly implicate the existence of undiscovered substrates. We tested the ranked predictions from GO-2-Substrates of new MALT1 human substrates by co-expression of candidates transfected with the oncogenic constitutively active cIAP2-MALT1 fusion protein or CARD11/BCL10/MALT1 active signalosome. We identified seven new MALT1 substrates by the co-transfection screen: TANK, TAB3, CASP10, ZC3H12D, ZC3H12B, CILK1 and ILDR2. Using catalytically inactive cIAP2-MALT1 (Cys464Ala), a MALT1 inhibitor, MLT-748, and noncleavable P1-Arg to Ala mutant versions of each substrate in dual transfections, we validated the seven new substrates in vitro. We confirmed the cleavage of endogenous TANK and the RNase ZC3H12D in B cells by Western blotting and mining TAILS N-terminomics datasets, where we also uncovered evidence for these and 12 other candidate substrates by endogenous MALT1. Thus, protein function information improves substrate predictions. The new substrates and other high-ranked MALT1 candidate substrates should open new biological frontiers for further validation and exploration of the function of MALT1 within and beyond NF-κB regulation.

3.
PLoS One ; 12(1): e0169026, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28052131

RESUMEN

The paracaspase MALT1 has arginine-directed proteolytic activity triggered by engagement of immune receptors. Recruitment of MALT1 into activation complexes is required for MALT1 proteolytic function. Here, co-expression of MALT1 in HEK293 cells, either with activated CARD11 and BCL10 or with TRAF6, was used to explore the mechanism of MALT1 activation at the molecular level. This work identified a prominent self-cleavage site of MALT1 isoform A (MALT1A) at R781 (R770 in MALT1B) and revealed that TRAF6 can activate MALT1 independently of the CBM. Intramolecular cleavage at R781/R770 removes a C-terminal TRAF6-binding site in both MALT1 isoforms, leaving MALT1B devoid of the two key interaction sites with TRAF6. A previously identified auto-proteolysis site of MALT1 at R149 leads to deletion of the death-domain, thereby abolishing interaction with BCL10. By using MALT1 isoforms and cleaved fragments thereof, as well as TRAF6 WT and mutant forms, this work shows that TRAF6 induces N-terminal auto-proteolytic cleavage of MALT1 at R149 and accelerates MALT1 protein turnover. The MALT1 fragment generated by N-terminal self-cleavage at R149 was labile and displayed enhanced signaling properties that required an intact K644 residue, previously shown to be a site for mono-ubiquitination of MALT1. Conversely, C-terminal self-cleavage at R781/R770 hampered the ability for self-cleavage at R149 and stabilized MALT1 by hindering interaction with TRAF6. C-terminal self-cleavage had limited impact on MALT1A but severely reduced MALT1B proteolytic and signaling functions. It also abrogated NF-κB activation by N-terminally cleaved MALT1A. Altogether, this study provides further insights into mechanisms that regulate the scaffolding and activation cycle of MALT1. It also emphasizes the reduced functional capacity of MALT1B as compared to MALT1A.


Asunto(s)
Caspasas/metabolismo , Proteínas de Neoplasias/metabolismo , Isoformas de Proteínas/metabolismo , Linfocitos T/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína 10 de la LLC-Linfoma de Células B , Western Blotting , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , Caspasas/genética , Línea Celular , Células Cultivadas , Electroforesis en Gel de Poliacrilamida , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , Células HEK293 , Humanos , Immunoblotting , Células Jurkat , Linfocitos/metabolismo , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas , Mutagénesis , Proteínas de Neoplasias/genética , Isoformas de Proteínas/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Factor 6 Asociado a Receptor de TNF/genética , Ubiquitinación/genética , Ubiquitinación/fisiología
4.
Nat Commun ; 6: 8777, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26525107

RESUMEN

Antigen receptor signalling activates the canonical NF-κB pathway via the CARD11/BCL10/MALT1 (CBM) signalosome involving key, yet ill-defined roles for linear ubiquitination. The paracaspase MALT1 cleaves and removes negative checkpoint proteins, amplifying lymphocyte responses in NF-κB activation and in B-cell lymphoma subtypes. To identify new human MALT1 substrates, we compare B cells from the only known living MALT1(mut/mut) patient with healthy MALT1(+/mut) family members using 10-plex Tandem Mass Tag TAILS N-terminal peptide proteomics. We identify HOIL1 of the linear ubiquitin chain assembly complex as a novel MALT1 substrate. We show linear ubiquitination at B-cell receptor microclusters and signalosomes. Late in the NF-κB activation cycle HOIL1 cleavage transiently reduces linear ubiquitination, including of NEMO and RIP1, dampening NF-κB activation and preventing reactivation. By regulating linear ubiquitination, MALT1 is both a positive and negative pleiotropic regulator of the human canonical NF-κB pathway-first promoting activation via the CBM--then triggering HOIL1-dependent negative-feedback termination, preventing reactivation.


Asunto(s)
Caspasas/genética , Síndromes de Inmunodeficiencia/genética , Linfocitos/inmunología , FN-kappa B/metabolismo , Proteínas de Neoplasias/genética , Ubiquitina-Proteína Ligasas/metabolismo , Adolescente , Adulto , Animales , Células Presentadoras de Antígenos , Linfocitos B/inmunología , Caspasas/inmunología , Caspasas/metabolismo , Familia , Femenino , Técnica del Anticuerpo Fluorescente , Proteínas Activadoras de GTPasa/metabolismo , Técnicas de Sustitución del Gen , Humanos , Quinasa I-kappa B/metabolismo , Immunoblotting , Síndromes de Inmunodeficiencia/inmunología , Inmunoprecipitación , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Leucocitos Mononucleares , Masculino , Espectrometría de Masas , Ratones , Microscopía Confocal , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas , Mutación , FN-kappa B/inmunología , Proteínas de Neoplasias/inmunología , Proteínas de Neoplasias/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Tonsila Palatina , Proteómica , Proteínas de Unión al ARN/metabolismo , Linfocitos T/inmunología , Espectrometría de Masas en Tándem , Factores de Transcripción , Ubiquitinación/inmunología
5.
J Immunol ; 194(8): 3723-34, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25762782

RESUMEN

The paracaspase MALT1 plays an important role in immune receptor-driven signaling pathways leading to NF-κB activation. MALT1 promotes signaling by acting as a scaffold, recruiting downstream signaling proteins, as well as by proteolytic cleavage of multiple substrates. However, the relative contributions of these two different activities to T and B cell function are not well understood. To investigate how MALT1 proteolytic activity contributes to overall immune cell regulation, we generated MALT1 protease-deficient mice (Malt1(PD/PD)) and compared their phenotype with that of MALT1 knockout animals (Malt1(-/-)). Malt1(PD/PD) mice displayed defects in multiple cell types including marginal zone B cells, B1 B cells, IL-10-producing B cells, regulatory T cells, and mature T and B cells. In general, immune defects were more pronounced in Malt1(-/-) animals. Both mouse lines showed abrogated B cell responses upon immunization with T-dependent and T-independent Ags. In vitro, inactivation of MALT1 protease activity caused reduced stimulation-induced T cell proliferation, impaired IL-2 and TNF-α production, as well as defective Th17 differentiation. Consequently, Malt1(PD/PD) mice were protected in a Th17-dependent experimental autoimmune encephalomyelitis model. Surprisingly, Malt1(PD/PD) animals developed a multiorgan inflammatory pathology, characterized by Th1 and Th2/0 responses and enhanced IgG1 and IgE levels, which was delayed by wild-type regulatory T cell reconstitution. We therefore propose that the pathology characterizing Malt1(PD/PD) animals arises from an immune imbalance featuring pathogenic Th1- and Th2/0-skewed effector responses and reduced immunosuppressive compartments. These data uncover a previously unappreciated key function of MALT1 protease activity in immune homeostasis and underline its relevance in human health and disease.


Asunto(s)
Linfocitos B Reguladores/inmunología , Caspasas/inmunología , Diferenciación Celular/inmunología , Proliferación Celular , Encefalomielitis Autoinmune Experimental/inmunología , Proteínas de Neoplasias/inmunología , Linfocitos T Reguladores/inmunología , Animales , Linfocitos B Reguladores/patología , Caspasas/genética , Diferenciación Celular/genética , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/patología , Humanos , Inmunoglobulina E/genética , Inmunoglobulina E/inmunología , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-2/genética , Interleucina-2/inmunología , Ratones , Ratones Noqueados , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas , Proteínas de Neoplasias/genética , Linfocitos T Reguladores/patología , Células TH1/inmunología , Células TH1/patología , Células Th17/inmunología , Células Th17/patología
6.
EMBO Rep ; 12(2): 129-35, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21212807

RESUMEN

Adaptor proteins allow temporal and spatial coordination of signalling. In this study, we show SUMOylation of the adaptor protein TANK and its interacting kinase TANK-binding kinase 1 (TBK1). Modification of TANK by the small ubiquitin-related modifier (SUMO) at the evolutionarily conserved Lys 282 is triggered by the kinase activities of IκB kinase ɛ (IKKɛ) and TBK1. Stimulation of TLR7 leads to inducible SUMOylation of TANK, which in turn weakens the interaction with IKKɛ and thus relieves the negative function of TANK on signal propagation. Reconstitution experiments show that an absence of TANK SUMOylation impairs inducible expression of distinct TLR7-dependent target genes, providing a molecular mechanism that allows the control of TANK function.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína SUMO-1/metabolismo , Receptor Toll-Like 7/metabolismo , Cisteína Endopeptidasas , Endopeptidasas/metabolismo , Células HEK293 , Humanos , Quinasa I-kappa B/metabolismo , Fosforilación , Proteínas de Unión a Poli-ADP-Ribosa , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal
7.
Mol Cell ; 37(4): 503-15, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20188669

RESUMEN

The IKK-related kinase IKKepsilon contributes to the antiviral response and can function as an oncogene that is frequently amplified in breast cancer. Here we report on an additional role of IKKepsilon as a mediator protecting from DNA-damage-induced cell death. Genotoxic stress allows for kinase-dependent entry of IKKepsilon into the nucleus, where IKKepsilon-dependent PML phosphorylation is a prerequisite for retention of this kinase in PML nuclear bodies. Within these subnuclear structures IKKepsilon inducibly colocalizes with TOPORS, which functions as a SUMO E3 ligase mediating SUMOylation of IKKepsilon at lysine 231. SUMO modification of IKKepsilon is required to trigger phosphorylation of nuclear substrates including NF-kappaB p65, thereby contributing to the antiapoptotic function of NF-kappaB in response to DNA damage.


Asunto(s)
Apoptosis , Núcleo Celular/metabolismo , Daño del ADN , Quinasa I-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Proteína SUMO-1/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Línea Celular , Humanos , Quinasa I-kappa B/deficiencia , Quinasa I-kappa B/genética , Ratones , Ratones Noqueados , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteína de la Leucemia Promielocítica , Unión Proteica , Transporte de Proteínas , Proteína SUMO-1/genética , Transducción de Señal , Factor de Transcripción ReIA/metabolismo , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/metabolismo
8.
Trends Biochem Sci ; 34(3): 128-35, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19233657

RESUMEN

After nuclear factor (NF)-kappaB activation, a complex network of negative feedback loops ensures that the termination of the NF-kappaB response occurs in a highly organized manner. Recent results show that signals initiated during the induction phase already program a default termination procedure that enables temporally and spatially regulated NF-kappaB deactivation. All negative feedback mechanisms occur with a characteristic time delay, thereby permitting full NF-kappaB function during the interim period. Some proteins that direct termination are produced directly in response to NF-kappaB activation, whereas others are activated via inducible binding or by protein stabilization. Another time-delaying strategy of NF-kappaB feedback inhibitory proteins relies on their ability to function as timers and molecular clockworks with the intrinsic property to terminate their own activity within a preset period.


Asunto(s)
Homeostasis/fisiología , FN-kappa B/metabolismo , Animales , Homeostasis/genética , Humanos , Modelos Biológicos , FN-kappa B/genética , Unión Proteica/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Activación Transcripcional/genética
9.
Mol Pharmacol ; 72(6): 1657-64, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17895408

RESUMEN

Boswellia resin is a major anti-inflammatory agent in herbal medical tradition, as well as a common food supplement. Its anti-inflammatory activity has been attributed to boswellic acid and its derivatives. Here, we re-examined the anti-inflammatory effect of the resin, using inhibitor of nuclear factor-kappaB alpha (IkappaB alpha) degradation in tumor necrosis factor (TNF) alpha-stimulated HeLa cells for a bioassay-guided fractionation. We thus isolated two novel nuclear factor-kappaB (NF-kappaB) inhibitors from the resin, their structures elucidated as incensole acetate (IA) and its nonacetylated form, incensole (IN). IA inhibited TAK/TAB-mediated IkappaB kinase (IKK) activation loop phosphorylation, resulting in the inhibition of cytokine and lipopolysaccharide-mediated NF-kappaB activation. It had no effect on IKK activity in vitro, and it did not suppress IkappaB alpha phosphorylation in costimulated T-cells, indicating that the kinase inhibition is neither direct nor does it affect all NF-kappaB activation pathways. The inhibitory effect seems specific; IA did not interfere with TNFalpha-induced activation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase. IA treatment had a robust anti-inflammatory effect in a mouse inflamed paw model. Cembrenoid diterpenoids, specifically IA and its derivatives, may thus constitute a potential novel group of NF-kappaB inhibitors, originating from an ancient anti-inflammatory herbal remedy.


Asunto(s)
Acetatos/química , Acetatos/farmacología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Boswellia , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Acetatos/aislamiento & purificación , Animales , Antiinflamatorios no Esteroideos/aislamiento & purificación , Boswellia/química , Femenino , Células HeLa , Humanos , Células Jurkat , Ratones , Ratones Endogámicos BALB C
10.
Cell Cycle ; 6(2): 139-43, 2007 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17245128

RESUMEN

Homeodomain interacting protein kinase 2 (HIPK2) is an evolutionary conserved serine/threonine kinase that regulates gene expression by phosphorylation of transcription factors and accessory components of the transcription machinery. HIPK2 is activated in response to DNA-damaging agents or morphogenic signals and accordingly HIPK2-guided gene expression programs trigger differentiation and development or alternatively apoptosis. The kinase contributes to the regulation of remarkably diverse pathways such as p53 activation or Wnt signaling. Here we discuss recent findings from biochemical and functional experiments that allow a deeper understanding of the pleiotropic effects mediated by HIPK2.


Asunto(s)
Proteínas Portadoras/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Transcripción Genética/fisiología , Animales , Apoptosis/genética , Muerte Celular/genética , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Humanos
11.
Mol Cell ; 24(1): 77-89, 2006 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-17018294

RESUMEN

Sumoylation serves to control key cellular functions, but the regulation of SUMO E3 ligase activity is largely unknown. Here we show that the polycomb group protein Pc2 binds to and colocalizes with homeodomain interacting protein kinase 2 (HIPK2) and serves as a SUMO E3 ligase for this kinase. DNA damage-induced HIPK2 directly phosphorylates Pc2 at multiple sites, which in turn controls Pc2 sumoylation and intranuclear localization. Inducible phosphorylation of Pc2 at threonine 495 is required for its ability to increase HIPK2 sumoylation in response to DNA damage, thereby establishing an autoregulatory feedback loop between a SUMO substrate and its cognate E3 ligase. Sumoylation enhances the ability of HIPK2 to mediate transcriptional repression, thus providing a mechanistic link for DNA damage-induced transcriptional silencing.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Portadoras/análisis , Proteínas Portadoras/genética , Línea Celular , Daño del ADN , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/análisis , Humanos , Ligasas , Fosforilación , Proteínas del Grupo Polycomb , Proteínas Serina-Treonina Quinasas/análisis , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes de Fusión/análisis , Proteínas Represoras/análisis , Proteínas Represoras/genética , Proteínas Represoras/fisiología , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...