Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hum Mol Genet ; 21(5): 1037-48, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22090424

RESUMEN

The LMNA gene encodes lamin A/C intermediate filaments that polymerize beneath the nuclear membrane, and are also found in the nucleoplasm in an uncharacterized assembly state. They are thought to have structural functions and regulatory roles in signaling pathways via interaction with transcription factors. Mutations in LMNA have been involved in numerous inherited human diseases, including severe congenital muscular dystrophy (L-CMD). We created the Lmna(ΔK32) knock-in mouse harboring a L-CMD mutation. Lmna(ΔK32/ΔK32) mice exhibited striated muscle maturation delay and metabolic defects, including reduced adipose tissue and hypoglycemia leading to premature death. The level of mutant proteins was markedly lower in Lmna(ΔK32/ΔK32), and while wild-type lamin A/C proteins were progressively relocated from nucleoplasmic foci to the nuclear rim during embryonic development, mutant proteins were maintained in nucleoplasmic foci. In the liver and during adipocyte differentiation, expression of ΔK32-lamin A/C altered sterol regulatory element binding protein 1 (SREBP-1) transcriptional activities. Taken together, our results suggest that lamin A/C relocation at the nuclear lamina seems important for tissue maturation potentially by releasing its inhibitory function on transcriptional factors, including but not restricted to SREBP-1. And importantly, L-CMD patients should be investigated for putative metabolic disorders.


Asunto(s)
Núcleo Celular/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Enfermedades Metabólicas/genética , Músculo Esquelético/crecimiento & desarrollo , Lámina Nuclear/metabolismo , Adipocitos/citología , Adipogénesis , Animales , Animales Recién Nacidos , Embrión de Mamíferos , Técnicas de Sustitución del Gen , Trastornos del Crecimiento/genética , Trastornos del Crecimiento/metabolismo , Corazón/crecimiento & desarrollo , Lamina Tipo B/metabolismo , Hígado/metabolismo , Enfermedades Metabólicas/metabolismo , Ratones , Mortalidad Prematura , Músculo Esquelético/anatomía & histología , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Miocitos Cardíacos/citología , Tamaño de los Órganos , Fenotipo , Transducción de Señal , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Transcripción Genética
2.
PLoS One ; 5(7): e11494, 2010 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-20628611

RESUMEN

BACKGROUND: Diabetes mellitus is associated with alterations in peripheral striated muscles and cardiomyopathy. We examined diaphragmatic function and fiber composition and identified the role of peroxisome proliferator-activated receptors (PPAR alpha and beta/delta) as a factor involved in diaphragm muscle plasticity in response to type I diabetes. METHODOLOGY/PRINCIPAL FINDINGS: Streptozotocin-treated rats were studied after 8 weeks and compared with their controls. Diaphragmatic strips were stimulated in vitro and mechanical and energetic variables were measured, cross bridge kinetics assessed, and the effects of fatigue and hypoxia evaluated. Morphometry, myosin heavy chain isoforms, PPAR alpha and beta/delta gene and protein expression were also assessed. Diabetes induced a decrease in maximum velocity of shortening (-14%, P<0.05) associated with a decrease in myosin ATPase activity (-49%, P<0.05), and an increase in force (+20%, P<0.05) associated with an increase in the number of cross bridges (+14%, P<0.05). These modifications were in agreement with a shift towards slow myosin heavy chain fibers and were associated with an upregulation of PPARbeta/delta (+314% increase in gene and +190% increase in protein expression, P<0.05). In addition, greater resistances to fatigue and hypoxia were observed in diabetic rats. CONCLUSIONS/SIGNIFICANCE: Type I diabetes induced complex mechanical and energetic changes in the rat diaphragm and was associated with an up-regulation of PPARbeta/delta that could improve resistance to fatigue and hypoxia and favour the shift towards slow myosin heavy chain isoforms.


Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Diafragma/patología , Diafragma/fisiopatología , PPAR delta/metabolismo , PPAR-beta/metabolismo , Animales , Western Blotting , Diabetes Mellitus Tipo 1/fisiopatología , Diafragma/metabolismo , Fatiga/metabolismo , Fatiga/fisiopatología , Hipoxia/metabolismo , Hipoxia/fisiopatología , Masculino , Miosinas/metabolismo , PPAR delta/genética , PPAR-beta/genética , Reacción en Cadena de la Polimerasa , Ratas , Ratas Wistar
3.
J Cell Biol ; 184(1): 31-44, 2009 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-19124654

RESUMEN

The LMNA gene encodes lamins A and C, two intermediate filament-type proteins that are important determinants of interphase nuclear architecture. Mutations in LMNA lead to a wide spectrum of human diseases including autosomal dominant Emery-Dreifuss muscular dystrophy (AD-EDMD), which affects skeletal and cardiac muscle. The cellular mechanisms by which mutations in LMNA cause disease have been elusive. Here, we demonstrate that defects in neuromuscular junctions (NMJs) are part of the disease mechanism in AD-EDMD. Two AD-EDMD mouse models show innervation defects including misexpression of electrical activity-dependent genes and altered epigenetic chromatin modifications. Synaptic nuclei are not properly recruited to the NMJ because of mislocalization of nuclear envelope components. AD-EDMD patients with LMNA mutations show the same cellular defects as the AD-EDMD mouse models. These results suggest that lamin A/C-mediated NMJ defects contribute to the AD-EDMD disease phenotype and provide insights into the cellular and molecular mechanisms for the muscle-specific phenotype of AD-EDMD.


Asunto(s)
Lamina Tipo A/fisiología , Distrofia Muscular de Emery-Dreifuss/metabolismo , Unión Neuromuscular/patología , Animales , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Modelos Animales de Enfermedad , Humanos , Lamina Tipo A/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Desnervación Muscular , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/ultraestructura , Músculo Esquelético/inervación , Músculo Esquelético/ultraestructura , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/patología , Transporte de Proteínas
4.
Mol Cell Biol ; 26(17): 6664-74, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16914747

RESUMEN

Serum response factor (SRF) is a crucial transcriptional factor for muscle-specific gene expression. We investigated SRF function in adult skeletal muscles, using mice with a postmitotic myofiber-targeted disruption of the SRF gene. Mutant mice displayed severe skeletal muscle mass reductions due to a postnatal muscle growth defect resulting in highly hypotrophic adult myofibers. SRF-depleted myofibers also failed to regenerate following injury. Muscles lacking SRF had very low levels of muscle creatine kinase and skeletal alpha-actin (SKA) transcripts and displayed other alterations to the gene expression program, indicating an overall immaturity of mutant muscles. This loss of SKA expression, together with a decrease in beta-tropomyosin expression, contributed to myofiber growth defects, as suggested by the extensive sarcomere disorganization found in mutant muscles. However, we observed a downregulation of interleukin 4 (IL-4) and insulin-like growth factor 1 (IGF-1) expression in mutant myofibers which could also account for their defective growth and regeneration. Indeed, our demonstration of SRF binding to interleukin 4 and IGF-1 promoters in vivo suggests a new crucial role for SRF in pathways involved in muscle growth and regeneration.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/metabolismo , Interleucina-4/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/fisiología , Regeneración , Factor de Respuesta Sérica/metabolismo , Animales , Animales Recién Nacidos , Secuencia de Bases , Núcleo Celular/metabolismo , Tamaño de la Célula , Regulación de la Expresión Génica , Factor I del Crecimiento Similar a la Insulina/genética , Integrasas/genética , Interleucina-4/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Músculo Esquelético/citología , Músculo Esquelético/ultraestructura , Tamaño de los Órganos , Fenotipo , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sarcómeros/patología , Sarcómeros/ultraestructura , Factor de Respuesta Sérica/deficiencia , Factor de Respuesta Sérica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...