Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
APL Bioeng ; 8(1): 016118, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38476404

RESUMEN

Engineered heart tissues have been created to study cardiac biology and disease in a setting that more closely mimics in vivo heart muscle than 2D monolayer culture. Previously published studies suggest that geometrically anisotropic micro-environments are crucial for inducing "in vivo like" physiology from immature cardiomyocytes. We hypothesized that the degree of cardiomyocyte alignment and prestress within engineered tissues is regulated by tissue geometry and, subsequently, drives electrophysiological development. Thus, we studied the effects of tissue geometry on electrophysiology of micro-heart muscle arrays (µHM) engineered from human induced pluripotent stem cells (iPSCs). Elongated tissue geometries elicited cardiomyocyte shape and electrophysiology changes led to adaptations that yielded increased calcium intake during each contraction cycle. Strikingly, pharmacologic studies revealed that a threshold of prestress and/or cellular alignment is required for sodium channel function, whereas L-type calcium and rapidly rectifying potassium channels were largely insensitive to these changes. Concurrently, tissue elongation upregulated sodium channel (NaV1.5) and gap junction (Connexin 43, Cx43) protein expression. Based on these observations, we leveraged elongated µHM to study the impact of loss-of-function mutation in Plakophilin 2 (PKP2), a desmosome protein implicated in arrhythmogenic disease. Within µHM, PKP2 knockout cardiomyocytes had cellular morphology similar to what was observed in isogenic controls. However, PKP2-/- tissues exhibited lower conduction velocity and no functional sodium current. PKP2 knockout µHM exhibited geometrically linked upregulation of sodium channel but not Cx43, suggesting that post-translational mechanisms, including a lack of ion channel-gap junction communication, may underlie the lower conduction velocity observed in tissues harboring this genetic defect. Altogether, these observations demonstrate that simple, scalable micro-tissue systems can provide the physiologic stresses necessary to induce electrical remodeling of iPS-CM to enable studies on the electrophysiologic consequences of disease-associated genomic variants.

2.
Med ; 4(12): 928-943.e5, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38029754

RESUMEN

BACKGROUND: Rapidly dividing cells are more sensitive to radiation therapy (RT) than quiescent cells. In the failing myocardium, macrophages and fibroblasts mediate collateral tissue injury, leading to progressive myocardial remodeling, fibrosis, and pump failure. Because these cells divide more rapidly than cardiomyocytes, we hypothesized that macrophages and fibroblasts would be more susceptible to lower doses of radiation and that cardiac radiation could therefore attenuate myocardial remodeling. METHODS: In three independent murine heart failure models, including models of metabolic stress, ischemia, and pressure overload, mice underwent 5 Gy cardiac radiation or sham treatment followed by echocardiography. Immunofluorescence, flow cytometry, and non-invasive PET imaging were employed to evaluate cardiac macrophages and fibroblasts. Serial cardiac magnetic resonance imaging (cMRI) from patients with cardiomyopathy treated with 25 Gy cardiac RT for ventricular tachycardia (VT) was evaluated to determine changes in cardiac function. FINDINGS: In murine heart failure models, cardiac radiation significantly increased LV ejection fraction and reduced end-diastolic volume vs. sham. Radiation resulted in reduced mRNA abundance of B-type natriuretic peptide and fibrotic genes, and histological assessment of the LV showed reduced fibrosis. PET and flow cytometry demonstrated reductions in pro-inflammatory macrophages, and immunofluorescence demonstrated reduced proliferation of macrophages and fibroblasts with RT. In patients who were treated with RT for VT, cMRI demonstrated decreases in LV end-diastolic volume and improvements in LV ejection fraction early after treatment. CONCLUSIONS: These results suggest that 5 Gy cardiac radiation attenuates cardiac remodeling in mice and humans with heart failure. FUNDING: NIH, ASTRO, AHA, Longer Life Foundation.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Humanos , Ratones , Animales , Remodelación Ventricular , Cardiomiopatías/complicaciones , Insuficiencia Cardíaca/radioterapia , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/etiología , Miocitos Cardíacos/metabolismo , Función Ventricular , Fibrosis
3.
JACC Basic Transl Sci ; 8(2): 109-120, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36124009

RESUMEN

COVID-19 is associated with serious cardiovascular complications, with incompletely understood mechanism(s). Pericytes have key functions in supporting endothelial cells and maintaining vascular integrity. We demonstrate that human cardiac pericytes are permissive to SARS-CoV-2 infection in organotypic slice and primary cell cultures. Viral entry into pericytes is mediated by endosomal proteases, and infection leads to up-regulation of inflammatory markers, vasoactive mediators, and nuclear factor kappa-B-dependent cell death. Furthermore, we present evidence of cardiac pericyte infection in COVID-19 myocarditis patients. These data demonstrate that human cardiac pericytes are susceptible to SARS-CoV-2 infection and suggest a role for pericyte infection in COVID-19.

4.
JACC Basic Transl Sci ; 7(10): 1001-1017, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36337924

RESUMEN

Glycogen synthase kinase 3 (GSK-3) inhibition has emerged as a potential therapeutic target for several diseases, including cancer. However, the role for GSK-3 regulation of human cardiac electrophysiology remains ill-defined. We demonstrate that SB216763, a GSK-3 inhibitor, can acutely reduce conduction velocity in human cardiac slices. Combined computational modeling and experimental approaches provided mechanistic insight into GSK-3 inhibition-mediated changes, revealing that decreased sodium-channel conductance and tissue conductivity may underlie the observed phenotypes. Our study demonstrates that GSK-3 inhibition in human myocardium alters electrophysiology and may predispose to an arrhythmogenic substrate; therefore, monitoring for adverse arrhythmogenic events could be considered.

5.
Am J Physiol Heart Circ Physiol ; 323(6): H1137-H1166, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36269644

RESUMEN

Cardiac arrhythmias are a major cause of morbidity and mortality worldwide. Although recent advances in cell-based models, including human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM), are contributing to our understanding of electrophysiology and arrhythmia mechanisms, preclinical animal studies of cardiovascular disease remain a mainstay. Over the past several decades, animal models of cardiovascular disease have advanced our understanding of pathological remodeling, arrhythmia mechanisms, and drug effects and have led to major improvements in pacing and defibrillation therapies. There exist a variety of methodological approaches for the assessment of cardiac electrophysiology and a plethora of parameters may be assessed with each approach. This guidelines article will provide an overview of the strengths and limitations of several common techniques used to assess electrophysiology and arrhythmia mechanisms at the whole animal, whole heart, and tissue level with a focus on small animal models. We also define key electrophysiological parameters that should be assessed, along with their physiological underpinnings, and the best methods with which to assess these parameters.


Asunto(s)
Enfermedades Cardiovasculares , Células Madre Pluripotentes Inducidas , Animales , Humanos , Técnicas Electrofisiológicas Cardíacas , Arritmias Cardíacas/etiología , Miocitos Cardíacos
6.
Physiol Rep ; 10(18): e15407, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36117385

RESUMEN

Atrial fibrillation (AF) is the most common arrhythmia in the United States, affecting approximately 1 in 10 adults, and its prevalence is expected to rise as the population ages. Treatment options for AF are limited; moreover, the development of new treatments is hindered by limited (1) knowledge regarding human atrial electrophysiological endpoints (e.g., conduction velocity [CV]) and (2) accurate experimental models. Here, we measured the CV and refractory period, and subsequently calculated the conduction wavelength, in vivo (four subjects with AF and four controls), and ex vivo (atrial slices from human hearts). Then, we created an in vitro model of human atrial conduction using induced pluripotent stem (iPS) cells. This model consisted of iPS-derived human atrial cardiomyocytes plated onto a micropatterned linear 1D spiral design of Matrigel. The CV (34-41 cm/s) of the in vitro model was nearly five times faster than 2D controls (7-9 cm/s) and similar to in vivo (40-64 cm/s) and ex vivo (28-51 cm/s) measurements. Our iPS-derived in vitro model recapitulates key features of in vivo atrial conduction and may be a useful methodology to enhance our understanding of AF and model patient-specific disease.


Asunto(s)
Fibrilación Atrial , Sistema de Conducción Cardíaco , Adulto , Atrios Cardíacos , Frecuencia Cardíaca , Humanos
7.
Nat Cardiovasc Res ; 1(3): 263-280, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35959412

RESUMEN

Heart failure represents a major cause of morbidity and mortality worldwide. Single-cell transcriptomics have revolutionized our understanding of cell composition and associated gene expression. Through integrated analysis of single-cell and single-nucleus RNA-sequencing data generated from 27 healthy donors and 18 individuals with dilated cardiomyopathy, here we define the cell composition of the healthy and failing human heart. We identify cell-specific transcriptional signatures associated with age and heart failure and reveal the emergence of disease-associated cell states. Notably, cardiomyocytes converge toward common disease-associated cell states, whereas fibroblasts and myeloid cells undergo dramatic diversification. Endothelial cells and pericytes display global transcriptional shifts without changes in cell complexity. Collectively, our findings provide a comprehensive analysis of the cellular and transcriptomic landscape of human heart failure, identify cell type-specific transcriptional programs and disease-associated cell states and establish a valuable resource for the investigation of human heart failure.

8.
Nat Commun ; 12(1): 5558, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34561429

RESUMEN

Cardiac radiotherapy (RT) may be effective in treating heart failure (HF) patients with refractory ventricular tachycardia (VT). The previously proposed mechanism of radiation-induced fibrosis does not explain the rapidity and magnitude with which VT reduction occurs clinically. Here, we demonstrate in hearts from RT patients that radiation does not achieve transmural fibrosis within the timeframe of VT reduction. Electrophysiologic assessment of irradiated murine hearts reveals a persistent supraphysiologic electrical phenotype, mediated by increases in NaV1.5 and Cx43. By sequencing and transgenic approaches, we identify Notch signaling as a mechanistic contributor to NaV1.5 upregulation after RT. Clinically, RT was associated with increased NaV1.5 expression in 1 of 1 explanted heart. On electrocardiogram (ECG), post-RT QRS durations were shortened in 13 of 19 patients and lengthened in 5 patients. Collectively, this study provides evidence for radiation-induced reprogramming of cardiac conduction as a potential treatment strategy for arrhythmia management in VT patients.


Asunto(s)
Conexina 43/genética , Sistema de Conducción Cardíaco/efectos de la radiación , Corazón/efectos de la radiación , Canal de Sodio Activado por Voltaje NAV1.5/genética , Taquicardia Ventricular/radioterapia , Potenciales de Acción/fisiología , Potenciales de Acción/efectos de la radiación , Animales , Conexina 43/metabolismo , Relación Dosis-Respuesta en la Radiación , Electrocardiografía , Fibrosis Endomiocárdica , Femenino , Regulación de la Expresión Génica , Corazón/fisiopatología , Sistema de Conducción Cardíaco/fisiopatología , Frecuencia Cardíaca/fisiología , Frecuencia Cardíaca/efectos de la radiación , Humanos , Masculino , Ratones , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Transducción de Señal , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatología
9.
JCI Insight ; 5(18)2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32841220

RESUMEN

Atrial fibrillation (AF) is the most common cardiac arrhythmia, yet the molecular signature of the vulnerable atrial substrate is not well understood. Here, we delineated a distinct transcriptional signature in right versus left atrial cardiomyocytes (CMs) at baseline and identified chamber-specific gene expression changes in patients with a history of AF in the setting of end-stage heart failure (AF+HF) that are not present in heart failure alone (HF). We observed that human left atrial (LA) CMs exhibited Notch pathway activation and increased ploidy in AF+HF but not in HF alone. Transient activation of Notch signaling within adult CMs in a murine genetic model is sufficient to increase ploidy in both atrial chambers. Notch activation within LA CMs generated a transcriptomic fingerprint resembling AF, with dysregulation of transcription factor and ion channel genes, including Pitx2, Tbx5, Kcnh2, Kcnq1, and Kcnip2. Notch activation also produced distinct cellular electrophysiologic responses in LA versus right atrial CMs, prolonging the action potential duration (APD) without altering the upstroke velocity in the left atrium and reducing the maximal upstroke velocity without altering the APD in the right atrium. Our results support a shared human/murine model of increased Notch pathway activity predisposing to AF.


Asunto(s)
Potenciales de Acción , Fibrilación Atrial/patología , Biomarcadores/metabolismo , Regulación de la Expresión Génica , Atrios Cardíacos/patología , Insuficiencia Cardíaca/patología , Miocitos Cardíacos/patología , Animales , Fibrilación Atrial/genética , Atrios Cardíacos/metabolismo , Insuficiencia Cardíaca/genética , Humanos , Ratones , Miocitos Cardíacos/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transcriptoma
11.
Pediatr Cardiol ; 40(7): 1325-1330, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31346662

RESUMEN

Spatiotemporal gene expression during cardiac development is a highly regulated process. Activation of key signaling pathways involved in electrophysiological programming, such as Notch and Wnt signaling, occurs in early cardiovascular development and these pathways are reactivated during pathologic remodeling. Direct targets of these signaling pathways have also been associated with inherited arrhythmias such as Brugada syndrome and arrhythmogenic cardiomyopathy. In addition, evidence is emerging from animal models that reactivation of Notch and Wnt signaling during cardiac pathology may predispose to acquired arrhythmias, underscoring the importance of elucidating the transcriptional and epigenetic effects on cardiac gene regulation. Here, we highlight specific examples where gene expression dictates electrophysiological properties in both normal and diseased hearts.


Asunto(s)
Arritmias Cardíacas/genética , Electrofisiología , Epigénesis Genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Humanos , Proteínas de Interacción con los Canales Kv/genética , Receptores Notch , Proteínas Represoras/genética , Transducción de Señal , Vía de Señalización Wnt
12.
J Mol Cell Cardiol ; 123: 92-107, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30193957

RESUMEN

Several inherited arrhythmias, including Brugada syndrome and arrhythmogenic cardiomyopathy, primarily affect the right ventricle and can lead to sudden cardiac death. Among many differences, right and left ventricular cardiomyocytes derive from distinct progenitors, prompting us to investigate how embryonic programming may contribute to chamber-specific conduction and arrhythmia susceptibility. Here, we show that developmental perturbation of Wnt signaling leads to chamber-specific transcriptional regulation of genes important in cardiac conduction that persists into adulthood. Transcriptional profiling of right versus left ventricles in mice deficient in Wnt transcriptional activity reveals global chamber differences, including genes regulating cardiac electrophysiology such as Gja1 and Scn5a. In addition, the transcriptional repressor Hey2, a gene associated with Brugada syndrome, is a direct target of Wnt signaling in the right ventricle only. These transcriptional changes lead to perturbed right ventricular cardiac conduction and cellular excitability. Ex vivo and in vivo stimulation of the right ventricle is sufficient to induce ventricular tachycardia in Wnt transcriptionally inactive hearts, while left ventricular stimulation has no effect. These data show that embryonic perturbation of Wnt signaling in cardiomyocytes leads to right ventricular arrhythmia susceptibility in the adult heart through chamber-specific regulation of genes regulating cellular electrophysiology.


Asunto(s)
Arritmias Cardíacas/etiología , Arritmias Cardíacas/metabolismo , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/fisiopatología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Biomarcadores , Biología Computacional/métodos , Simulación por Computador , Susceptibilidad a Enfermedades , Electrocardiografía , Elementos de Facilitación Genéticos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genotipo , Sistema de Conducción Cardíaco/fisiopatología , Humanos , Inmunohistoquímica , Mutación , Miocitos Cardíacos/metabolismo , Imagen Óptica , Fenotipo , Unión Proteica , Proteínas Represoras/metabolismo , Proteínas Wnt/genética , beta Catenina
13.
J Cardiovasc Dev Dis ; 5(1)2018 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-29517992

RESUMEN

The left and right ventricles of the four-chambered heart have distinct developmental origins and functions. Chamber-specific developmental programming underlies the differential gene expression of ion channel subunits regulating cardiac electrophysiology that persists into adulthood. Here, we discuss regional specific electrical responses to genetic mutations and cardiac stressors, their clinical correlations, and describe many of the multi-scale techniques commonly used to analyze electrophysiological regional heterogeneity.

15.
Circ Res ; 121(5): 549-563, 2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28674041

RESUMEN

RATIONALE: Notch signaling programs cardiac conduction during development, and in the adult ventricle, injury-induced Notch reactivation initiates global transcriptional and epigenetic changes. OBJECTIVE: To determine whether Notch reactivation may stably alter atrial ion channel gene expression and arrhythmia inducibility. METHODS AND RESULTS: To model an injury response and determine the effects of Notch signaling on atrial electrophysiology, we transiently activate Notch signaling within adult myocardium using a doxycycline-inducible genetic system (inducible Notch intracellular domain [iNICD]). Significant heart rate slowing and frequent sinus pauses are observed in iNICD mice when compared with controls. iNICD mice have structurally normal atria and preserved sinus node architecture, but expression of key transcriptional regulators of sinus node and atrial conduction, including Nkx2-5 (NK2 homeobox 5), Tbx3, and Tbx5 are dysregulated. To determine whether the induced electrical changes are stable, we transiently activated Notch followed by a prolonged washout period and observed that, in addition to decreased heart rate, atrial conduction velocity is persistently slower than control. Consistent with conduction slowing, genes encoding molecular determinants of atrial conduction velocity, including Scn5a (Nav1.5) and Gja5 (connexin 40), are persistently downregulated long after a transient Notch pulse. Consistent with the reduction in Scn5a transcript, Notch induces global changes in the atrial action potential, including a reduced dVm/dtmax. In addition, programmed electrical stimulation near the murine pulmonary vein demonstrates increased susceptibility to atrial arrhythmias in mice where Notch has been transiently activated. Taken together, these results suggest that transient Notch activation persistently alters ion channel gene expression and atrial electrophysiology and predisposes to an arrhythmogenic substrate. CONCLUSIONS: Our data provide evidence that Notch signaling regulates transcription factor and ion channel gene expression within adult atrial myocardium. Notch reactivation induces electrical changes, resulting in sinus bradycardia, sinus pauses, and a susceptibility to atrial arrhythmias, which contribute to a phenotype resembling sick sinus syndrome.


Asunto(s)
Receptores Notch/biosíntesis , Receptores Notch/genética , Síndrome del Seno Enfermo/genética , Síndrome del Seno Enfermo/metabolismo , Animales , Expresión Génica , Sistema de Conducción Cardíaco/metabolismo , Canales Iónicos/biosíntesis , Canales Iónicos/genética , Ratones , Ratones Transgénicos , Miocardio/metabolismo , Técnicas de Cultivo de Órganos , Factores de Tiempo , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
16.
Circ Res ; 119(12): 1324-1338, 2016 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-27697822

RESUMEN

RATIONALE: Ventricular arrhythmias often arise from the Purkinje-myocyte junction and are a leading cause of sudden cardiac death. Notch activation reprograms cardiac myocytes to an induced Purkinje-like state characterized by prolonged action potential duration and expression of Purkinje-enriched genes. OBJECTIVE: To understand the mechanism by which canonical Notch signaling causes action potential prolongation. METHODS AND RESULTS: We find that endogenous Purkinje cells have reduced peak K+ current, Ito, and IK,slow when compared with ventricular myocytes. Consistent with partial reprogramming toward a Purkinje-like phenotype, Notch activation decreases peak outward K+ current density, as well as the outward K+ current components Ito,f and IK,slow. Gene expression studies in Notch-activated ventricles demonstrate upregulation of Purkinje-enriched genes Contactin-2 and Scn5a and downregulation of K+ channel subunit genes that contribute to Ito,f and IK,slow. In contrast, inactivation of Notch signaling results in increased cell size commensurate with increased K+ current amplitudes and mimics physiological hypertrophy. Notch-induced changes in K+ current density are regulated at least in part via transcriptional changes. Chromatin immunoprecipitation demonstrates dynamic RBP-J (recombination signal binding protein for immunoglobulin kappa J region) binding and loss of active histone marks on K+ channel subunit promoters with Notch activation, and similar transcriptional and epigenetic changes occur in a heart failure model. Interestingly, there is a differential response in Notch target gene expression and cellular electrophysiology in left versus right ventricular cardiac myocytes. CONCLUSIONS: In summary, these findings demonstrate a novel mechanism for regulation of voltage-gated potassium currents in the setting of cardiac pathology and may provide a novel target for arrhythmia drug design.


Asunto(s)
Epigénesis Genética/fisiología , Miocitos Cardíacos/fisiología , Canales de Potasio con Entrada de Voltaje/fisiología , Células de Purkinje/fisiología , Receptores Notch/fisiología , Animales , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
17.
Nat Commun ; 7: 12088, 2016 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-27357444

RESUMEN

Increasing angiogenesis has long been considered a therapeutic target for improving heart function after injury such as acute myocardial infarction. However, gene, protein and cell therapies to increase microvascularization have not been successful, most likely because the studies failed to achieve regulated and concerted expression of pro-angiogenic and angiostatic factors needed to produce functional microvasculature. Here, we report that the transcription factor RBPJ is a homoeostatic repressor of multiple pro-angiogenic and angiostatic factor genes in cardiomyocytes. RBPJ controls angiogenic factor gene expression independently of Notch by antagonizing the activity of hypoxia-inducible factors (HIFs). In contrast to previous strategies, the cardiomyocyte-specific deletion of Rbpj increased microvascularization of the heart without adversely affecting cardiac structure or function even into old age. Furthermore, the loss of RBPJ in cardiomyocytes increased hypoxia tolerance, improved heart function and decreased pathological remodelling after myocardial infarction, suggesting that inhibiting RBPJ might be therapeutic for ischaemic injury.


Asunto(s)
Vasos Coronarios/crecimiento & desarrollo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/fisiología , Miocitos Cardíacos/metabolismo , Neovascularización Fisiológica , Animales , Femenino , Regulación de la Expresión Génica , Células HEK293 , Humanos , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Ratones , Microvasos/crecimiento & desarrollo , Comunicación Paracrina
19.
Trends Cardiovasc Med ; 26(1): 14-20, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25937044

RESUMEN

Diseases of the cardiac conduction system can be debilitating and deadly. Electronic pacemakers are incredibly effective in the treatment of sinus and AV node dysfunction, yet there remain important limitations and complications. These issues have driven interest in the development of a biological pacemaker. Here, we review experimental progress in animal models and discuss future directions, with a focus on reprogramming endogenous cells in the heart to treat defects of rhythm and conduction.


Asunto(s)
Arritmias Cardíacas , Reprogramación Celular , Sistema de Conducción Cardíaco/fisiopatología , Terapias en Investigación/métodos , Arritmias Cardíacas/patología , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/terapia , Humanos
20.
Circ Res ; 116(3): 398-406, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25599332

RESUMEN

RATIONALE: Proper patterning of the atrioventricular canal (AVC) is essential for delay of electrical impulses between atria and ventricles, and defects in AVC maturation can result in congenital heart disease. OBJECTIVE: To determine the role of canonical Wnt signaling in the myocardium during AVC development. METHODS AND RESULTS: We used a novel allele of ß-catenin that preserves ß-catenin's cell adhesive functions but disrupts canonical Wnt signaling, allowing us to probe the effects of Wnt loss of function independently. We show that the loss of canonical Wnt signaling in the myocardium results in tricuspid atresia with hypoplastic right ventricle associated with the loss of AVC myocardium. In contrast, ectopic activation of Wnt signaling was sufficient to induce formation of ectopic AV junction-like tissue as assessed by morphology, gene expression, and electrophysiological criteria. Aberrant AVC development can lead to ventricular pre-excitation, a characteristic feature of Wolff-Parkinson-White syndrome. We demonstrate that postnatal activation of Notch signaling downregulates canonical Wnt targets within the AV junction. Stabilization of ß-catenin protein levels can rescue Notch-mediated ventricular pre-excitation and dysregulated ion channel gene expression. CONCLUSIONS: Our data demonstrate that myocardial canonical Wnt signaling is an important regulator of AVC maturation and electric programming upstream of Tbx3. Our data further suggest that ventricular pre-excitation may require both morphological patterning defects, as well as myocardial lineage reprogramming, to allow robust conduction across accessory pathway tissue.


Asunto(s)
Atrios Cardíacos/metabolismo , Sistema de Conducción Cardíaco/metabolismo , Ventrículos Cardíacos/metabolismo , Atresia Tricúspide/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Animales , Atrios Cardíacos/embriología , Atrios Cardíacos/fisiopatología , Sistema de Conducción Cardíaco/embriología , Sistema de Conducción Cardíaco/fisiopatología , Ventrículos Cardíacos/embriología , Ventrículos Cardíacos/fisiopatología , Ratones , Miocardio/metabolismo , Receptores Notch/metabolismo , Proteínas de Dominio T Box/metabolismo , Atresia Tricúspide/genética , Atresia Tricúspide/fisiopatología , beta Catenina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...