Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
PLoS Pathog ; 19(6): e1011088, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37352334

RESUMEN

Macrophages employ an array of pattern recognition receptors to detect and eliminate intracellular pathogens that access the cytosol. The cytosolic carbohydrate sensors Galectin-3, -8, and -9 (Gal-3, Gal-8, and Gal-9) recognize damaged pathogen-containing phagosomes, and Gal-3 and Gal-8 are reported to restrict bacterial growth via autophagy in cultured cells. However, the contribution of these galectins to host resistance during bacterial infection in vivo remains unclear. We found that Gal-9 binds directly to Mycobacterium tuberculosis (Mtb) and Salmonella enterica serovar Typhimurium (Stm) and localizes to Mtb in macrophages. To determine the combined contribution of membrane damage-sensing galectins to immunity, we generated Gal-3, -8, and -9 triple knockout (TKO) mice. Mtb infection of primary macrophages from TKO mice resulted in defective autophagic flux but normal bacterial replication. Surprisingly, these mice had no discernable defect in resistance to acute infection with Mtb, Stm or Listeria monocytogenes, and had only modest impairments in bacterial growth restriction and CD4 T cell activation during chronic Mtb infection. Collectively, these findings indicate that while Gal-3, -8, and -9 respond to an array of intracellular pathogens, together these membrane damage-sensing galectins play a limited role in host resistance to bacterial infection.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Ratones , Animales , Galectina 3/genética , Tuberculosis/metabolismo , Galectinas/genética , Galectinas/metabolismo , Macrófagos , Salmonella typhimurium , Ratones Noqueados
3.
Nat Microbiol ; 8(5): 819-832, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37037941

RESUMEN

Whether or not autophagy has a role in defence against Mycobacterium tuberculosis infection remains unresolved. Previously, conditional knockdown of the core autophagy component ATG5 in myeloid cells was reported to confer extreme susceptibility to M. tuberculosis in mice, whereas depletion of other autophagy factors had no effect on infection. We show that doubling cre gene dosage to more robustly deplete ATG16L1 or ATG7 resulted in increased M. tuberculosis growth and host susceptibility in mice, although ATG5-depleted mice are more sensitive than ATG16L1- or ATG7-depleted mice. We imaged individual macrophages infected with M. tuberculosis and identified a shift from apoptosis to rapid necrosis in autophagy-depleted cells. This effect was dependent on phagosome permeabilization by M. tuberculosis. We monitored infected cells by electron microscopy, showing that autophagy protects the host macrophage by partially reducing mycobacterial access to the cytosol. We conclude that autophagy has an important role in defence against M. tuberculosis in mammals.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Ratones , Animales , Tuberculosis/microbiología , Autofagia/genética , Macrófagos/microbiología , Proteína 5 Relacionada con la Autofagia/genética , Mamíferos
4.
Elife ; 92020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31951200

RESUMEN

Macrophages are highly plastic cells with critical roles in immunity, cancer, and tissue homeostasis, but how these distinct cellular fates are triggered by environmental cues is poorly understood. To uncover how primary murine macrophages respond to bacterial pathogens, we globally assessed changes in post-translational modifications of proteins during infection with Mycobacterium tuberculosis, a notorious intracellular pathogen. We identified hundreds of dynamically regulated phosphorylation and ubiquitylation sites, indicating that dramatic remodeling of multiple host pathways, both expected and unexpected, occurred during infection. Most of these cellular changes were not captured by mRNA profiling, and included activation of ubiquitin-mediated autophagy, an evolutionarily ancient cellular antimicrobial system. This analysis also revealed that a particular autophagy receptor, TAX1BP1, mediates clearance of ubiquitylated Mtb and targets bacteria to LC3-positive phagophores. These studies provide a new resource for understanding how macrophages shape their proteome to meet the challenge of infection.


Asunto(s)
Macrófagos/microbiología , Mycobacterium tuberculosis/patogenicidad , Procesamiento Proteico-Postraduccional , Tuberculosis/metabolismo , Animales , Autofagia/inmunología , Proteínas Bacterianas/metabolismo , Humanos , Macrófagos/inmunología , Ratones , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/metabolismo , Fosforilación , Proteoma , Tuberculosis/inmunología , Tuberculosis/microbiología , Ubiquitinación
5.
Microbes Infect ; 17(8): 564-74, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25862076

RESUMEN

We previously determined that burst size necrosis is the chief mode of mononuclear cell death in the lungs of mice with tuberculosis. The present study explored the link between infection-induced necrosis of mononuclear phagocytes and neutrophil accumulation in the lungs of mice challenged with one of four Mycobacterium tuberculosis strains of increasing virulence (RvΔphoPR mutant, H37Ra, H37Rv and Erdman). At all time points studied, Erdman produced the highest bacterial load and the highest proportion and number of M. tuberculosis-infected neutrophils. These parameters, and the proportion of TUNEL-positive cells, tracked with virulence across all strains tested. Differences in neutrophil infection were not reflected by levels of chemoattractant cytokines in bronchoalveolar lavage fluid, while interferon-γ (reported to suppress neutrophil trafficking to the lung in tuberculosis) was highest in Erdman-infected mice. Treating Erdman-infected mice with ethambutol decreased the proportion of mononuclear phagocytes with high bacterial burden and the ratio of infected neutrophils to infected mononuclear cells in a dose-dependent manner. We propose that faster replicating M. tuberculosis strains cause more necrosis which in turn promotes neutrophil recruitment. Neutrophils infected with M. tuberculosis constitute a biomarker for poorly controlled bacterial replication, infection-induced mononuclear cell death, and increased severity of immune pathology in tuberculosis.


Asunto(s)
Mycobacterium tuberculosis/patogenicidad , Infiltración Neutrófila/inmunología , Neutrófilos/inmunología , Tuberculosis/microbiología , Animales , Carga Bacteriana , Muerte Celular/inmunología , Ratones , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/metabolismo , Neutrófilos/metabolismo , Tuberculosis/patología , Virulencia/inmunología
6.
PLoS Pathog ; 9(2): e1003190, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23436998

RESUMEN

We previously reported that Mycobacterium tuberculosis triggers macrophage necrosis in vitro at a threshold intracellular load of ~25 bacilli. This suggests a model for tuberculosis where bacilli invading lung macrophages at low multiplicity of infection proliferate to burst size and spread to naïve phagocytes for repeated cycles of replication and cytolysis. The current study evaluated that model in vivo, an environment significantly more complex than in vitro culture. In the lungs of mice infected with M. tuberculosis by aerosol we observed three distinct mononuclear leukocyte populations (CD11b(-) CD11c(+/hi), CD11b(+/lo) CD11c(lo/-), CD11b(+/hi) CD11c(+/hi)) and neutrophils hosting bacilli. Four weeks after aerosol challenge, CD11b(+/hi) CD11c(+/hi) mononuclear cells and neutrophils were the predominant hosts for M. tuberculosis while CD11b(+/lo) CD11c(lo/-) cells assumed that role by ten weeks. Alveolar macrophages (CD11b(-) CD11c(+/hi)) were a minority infected cell type at both time points. The burst size model predicts that individual lung phagocytes would harbor a range of bacillary loads with most containing few bacilli, a smaller proportion containing many bacilli, and few or none exceeding a burst size load. Bacterial load per cell was enumerated in lung monocytic cells and neutrophils at time points after aerosol challenge of wild type and interferon-γ null mice. The resulting data fulfilled those predictions, suggesting a median in vivo burst size in the range of 20 to 40 bacilli for monocytic cells. Most heavily burdened monocytic cells were nonviable, with morphological features similar to those observed after high multiplicity challenge in vitro: nuclear condensation without fragmentation and disintegration of cell membranes without apoptotic vesicle formation. Neutrophils had a narrow range and lower peak bacillary burden than monocytic cells and some exhibited cell death with release of extracellular neutrophil traps. Our studies suggest that burst size cytolysis is a major cause of infection-induced mononuclear cell death in tuberculosis.


Asunto(s)
Macrófagos Alveolares/microbiología , Mycobacterium tuberculosis/crecimiento & desarrollo , Tuberculosis Pulmonar/microbiología , Animales , Carga Bacteriana , Muerte Celular , Células Cultivadas , Interferón gamma/genética , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/microbiología , Pulmón/inmunología , Pulmón/microbiología , Macrófagos Alveolares/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Inmunológicos , Mycobacterium tuberculosis/citología , Mycobacterium tuberculosis/inmunología , Neutrófilos/microbiología , Tuberculosis Pulmonar/inmunología
7.
PLoS One ; 6(3): e18367, 2011 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-21483832

RESUMEN

BACKGROUND: Macrophage cell death following infection with Mycobacterium tuberculosis plays a central role in tuberculosis disease pathogenesis. Certain attenuated strains induce extrinsic apoptosis of infected macrophages but virulent strains of M. tuberculosis suppress this host response. We previously reported that virulent M. tuberculosis induces cell death when bacillary load exceeds ∼20 per macrophage but the precise nature of this demise has not been defined. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the characteristics of cell death in primary murine macrophages challenged with virulent or attenuated M. tuberculosis complex strains. We report that high intracellular bacillary burden causes rapid and primarily necrotic death via lysosomal permeabilization, releasing hydrolases that promote Bax/Bak-independent mitochondrial damage and necrosis. Cell death was independent of cathepsins B or L and notable for ultrastructural evidence of damage to lipid bilayers throughout host cells with depletion of several host phospholipid species. These events require viable bacteria that can respond to intracellular cues via the PhoPR sensor kinase system but are independent of the ESX1 system. CONCLUSIONS/SIGNIFICANCE: Cell death caused by virulent M. tuberculosis is distinct from classical apoptosis, pyroptosis or pyronecrosis. Mycobacterial genes essential for cytotoxicity are regulated by the PhoPR two-component system. This atypical death mode provides a mechanism for viable bacilli to exit host macrophages for spreading infection and the eventual transition to extracellular persistence that characterizes advanced pulmonary tuberculosis.


Asunto(s)
Macrófagos/citología , Macrófagos/microbiología , Mycobacterium tuberculosis/patogenicidad , Animales , Apoptosis/fisiología , Catepsinas/metabolismo , Células Cultivadas , Cromatografía Líquida de Alta Presión , Proteínas de Homeodominio/metabolismo , Concentración de Iones de Hidrógeno , Macrófagos/metabolismo , Potencial de la Membrana Mitocondrial , Ratones , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Necrosis/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/metabolismo , Virulencia , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...