Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2400784, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38837286

RESUMEN

Marine biofouling is a complex and dynamic process that significantly increases the carbon emissions from the maritime industry by increasing drag losses. However, there are no existing non-toxic marine paints that can achieve both effective fouling reduction and efficient fouling release. Inspired by antifouling strategies in nature, herein, a superoleophobic zwitterionic nanowire coating with a nanostructured hydration layer is introduced, which exhibits simultaneous fouling reduction and release performance. The zwitterionic nanowires demonstrate >25% improvement in fouling reduction compared to state-of-the-art antifouling nanostructures, and four times higher fouling-release compared to conventional zwitterionic coatings. Fouling release is successfully achieved under a wall shear force that is four orders of magnitude lower than regular water jet cleaning. The mechanism of this simultaneous fouling reduction and release behavior is explored, and it is found that a combination of 1) a mechanical biocidal effect from the nanowire geometry, and 2) low interfacial adhesion resulting from the nanostructured hydration layer, are the major contributing factors. These findings provide insights into the design of nanostructured coatings with simultaneous fouling reduction and release. The newly established synthesis procedure for the zwitterionic nanowires opens new pathways for implementation as antifouling coatings in the maritime industry and biomedical devices.

2.
Methods Mol Biol ; 2777: 191-204, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38478345

RESUMEN

Nanoparticle drug delivery has been promoted as an effective mode of delivering antineoplastic therapeutics. However, most nanoparticle designs fail to consider the multifaceted tumor microenvironment (TME) that produce pro-tumoral niches, which are often resistant to chemo- and targeted therapies. In order to target the chemoresistant cancer stem-like cells (CSCs) and their supportive TME, in this chapter we describe a nanoparticle-based targeted co-delivery that addresses the paracrine interactions between CSC and non-cancerous mesenchymal stem cells (MSCs) in the TME. Carcinoma-activated MSCs have been shown to increase the chemoresistance and metastasis of CSC. Yet their contributions to protect the CSC TME have not yet been systematically investigated in the design of nanoparticles for drug delivery. Therefore, we describe the fabrication of degradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles (120-200 nm), generated with an electrospraying process that encapsulates both a conventional chemotherapeutic, paclitaxel, and a targeted tyrosine kinase inhibitor, sunitinib, to limit MSC interactions with CSC. In the 3D hetero-spheroid model that comprises both CSCs and MSCs, the delivery of sunitinib as a free drug disrupted the MSC-protected CSC stemness and migration. Therefore, this chapter describes the co-delivery of paclitaxel and sunitinib via PLGA nanoparticles as a potential targeted therapy strategy for targeting CSCs. Overall, nanoparticles can provide an effective delivery platform for targeting CSCs and their TME together. Forthcoming studies can corroborate similar combined therapies with nanoparticles to improve the killing of CSC and chemoresistant cancer cells, thereby improving treatment efficiency.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ácido Poliglicólico , Glicoles , Sunitinib/farmacología , Ácido Láctico , Antineoplásicos/farmacología , Paclitaxel/farmacología , Línea Celular Tumoral , Portadores de Fármacos , Neoplasias/tratamiento farmacológico
3.
Matter ; 5(11): 4076-4091, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36034972

RESUMEN

Surfaces contaminated with bacteria and viruses contribute to the transmission of infectious diseases and pose a significant threat to global public health. Modern day disinfection either relies on fast-acting (>3-log reduction within a few minutes), yet impermanent, liquid-, vapor-, or radiation-based disinfection techniques, or long-lasting, but slower-acting, passive antimicrobial surfaces based on heavy metal surfaces, or metallic nanoparticles. There is currently no surface that provides instant and persistent antimicrobial efficacy against a broad spectrum of bacteria and viruses. In this work, we describe a class of extremely durable antimicrobial surfaces incorporating different plant secondary metabolites that are capable of rapid disinfection (>4-log reduction) of current and emerging pathogens within minutes, while maintaining persistent efficacy over several months and under significant environmental duress. We also show that these surfaces can be readily applied onto a variety of desired substrates or devices via simple application techniques such as spray, flow, or brush coating.

4.
ACS Appl Mater Interfaces ; 14(19): 22466-22475, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35533373

RESUMEN

Surfaces that are resistant to both liquid fouling and solid fouling are critical for many industrial and biomedical applications. However, surfaces developed to address these challenges thus far have been generally susceptible to mechanical damage. Herein, we report the design and fabrication of robust solid- and liquid-repellent elastomeric coatings that incorporate partially crosslinked lubricating chains within a durable polymer matrix. In particular, we fabricated partially crosslinked omniphobic polyurethane (omni-PU) coatings that can repel a broad range of liquid and solid foulants. The fabricated coatings are an order of magnitude more resistant to cyclic abrasion than current state-of-the-art slippery surfaces. Further through the integration of classic wetting and tribology models, we introduce a new material design parameter (KAR) for abrasion-resistant polymeric coatings. This combination of mechanical durability and broad antifouling properties enables the implication of such coatings to a wide variety of industrial and medical settings, including biocompatible implants, underwater vehicles, and antifouling robotics.

5.
Methods Mol Biol ; 2424: 217-245, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34918298

RESUMEN

Cancer stem-like cells (CSC) are responsible for tumor progression, chemoresistance, recurrence, and poor outcomes in many cancers, making them critical research and therapeutic targets. One of the critical components potentiating CSC chemoresistance is the interactions between CSC and the surrounding cells in the tumor microenvironment. Our lab has developed several 3D co-culture models to study ovarian CSC interactions with stromal or immune cells found in ovarian tumor microenvironments. In this chapter, we use ovarian cancer as a model to describe the methodologies developed in our lab; however, these techniques are applicable to a wide range of cancers. First, we discuss our method for isolating CSC from heterogeneous tumors and for creating 3D self-assembled tumoroids in hanging drop plates, in either monoculture or co-culture with mesenchymal stem cells or monocytes/macrophages. We then discuss methods for analyzing these models with a focus on isolating cell-type-specific changes and mechanism investigation. Specifically, we describe lentiviral transduction and flow cytometry as established and robust methods to identify and separate each cell type for downstream analysis. We then describe methods to examine CSC functionality with transwell migration assays and colorimetric MTS-based proliferation assays. Finally, we demonstrate enzyme-linked immunosorbent assays (ELISA ) and quantitative polymerase chain reaction (qPCR) methods as mechanistic investigation tools to decouple paracrine and juxtacrine interactions. These methods have wide-reaching applications in cancer research from basic biological investigations, to drug discovery, and personalized drug screening for precision medicine.


Asunto(s)
Neoplasias Ováricas , Microambiente Tumoral , Línea Celular Tumoral , Técnicas de Cocultivo , Resistencia a Antineoplásicos , Femenino , Humanos , Células Madre Neoplásicas , Neoplasias Ováricas/tratamiento farmacológico
6.
Anal Chem ; 93(22): 8054-8061, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34038078

RESUMEN

Multicellular spheroids are superior to other culture geometries in reproducing critical physiological conditions of tumors, such as the diffusion of oxygen, nutrients, waste, and drugs, leading to a more precise model of in vivo drug sensitivity and resistance. Previously reported spheroid culture platforms are often difficult to use, expensive, single-use, or mechanically unstable. Here, we report a facile, mechanically stable, high-throughput spheroid culture platform based on hierarchically textured omniphobic surfaces. The developed omniphobic surfaces display very high contact angles with a range of different liquids, including the cell-laden culture media, thereby minimizing the cell surface contact area. Additionally, these surfaces maintain these high contact angles for extended periods of time to ensure cell aggregation. Using this novel platform, we demonstrate the generation and maintenance of robust multicellular spheroids, as well as heterogeneous, multicell-type spheroids. The platform is extremely robust, resistant to mechanical shock, allows for on-plate imaging, and is also the first-ever spheroid generation platform that can be reused repeatedly. Finally, the platform is suitable for on-plate drug screening and enables the first-ever, on-plate immunofluorescence staining and imaging of spheroids.


Asunto(s)
Neoplasias , Esferoides Celulares , Evaluación Preclínica de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Humanos
7.
Acta Biomater ; 132: 401-420, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-33940195

RESUMEN

Intractable human diseases such as cancers, are context dependent, unique to both the individual patient and to the specific tumor microenvironment. However, conventional cancer treatments are often nonspecific, targeting global similarities rather than unique drivers. This limits treatment efficacy across heterogeneous patient populations and even at different tumor locations within the same patient. Ultimately, this poor efficacy can lead to adverse clinical outcomes and the development of treatment-resistant relapse. To prevent this and improve outcomes, it is necessary to be selective when choosing a patient's optimal adjuvant treatment. In this review, we posit the use of personalized, tumor-specific models (TSM) as tools to achieve this remarkable feat. First, using ovarian cancer as a model disease, we outline the heterogeneity and complexity of both the cellular and extracellular components in the tumor microenvironment. Then we examine the advantages and disadvantages of contemporary cancer models and the rationale for personalized TSM. We discuss how to generate precision 3D models through careful and detailed analysis of patient biopsies. Finally, we provide clinically relevant applications of these versatile personalized cancer models to highlight their potential impact. These models are ideal for a myriad of fundamental cancer biology and translational studies. Importantly, these approaches can be extended to other carcinomas, facilitating the discovery of new therapeutics that more effectively target the unique aspects of each individual patient's TME. STATEMENT OF SIGNIFICANCE: In this article, we have presented the case for the application of biomaterials in developing personalized models of complex diseases such as cancers. TSM could bring about breakthroughs in the promise of precision medicine. The critical components of the diverse tumor microenvironments, that lead to treatment failures, include cellular- and extracellular matrix- heterogeneity, and biophysical signals to the cells. Therefore, we have described these dynamic components of the tumor microenvironments, and have highlighted how contemporary biomaterials can be utilized to create personalized in vitro models of cancers. We have also described the application of the TSM to predict the dynamic patterns of disease progression, and predict effective therapies that can produce durable responses, limit relapses, and treat any minimal residual disease.


Asunto(s)
Neoplasias Ováricas , Microambiente Tumoral , Matriz Extracelular , Femenino , Humanos , Recurrencia Local de Neoplasia , Medicina de Precisión
8.
Cancers (Basel) ; 11(7)2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31323899

RESUMEN

Ovarian cancer is an extremely lethal gynecologic disease; with the high-grade serous subtype predominantly associated with poor survival rates. Lack of early diagnostic biomarkers and prevalence of post-treatment recurrence, present substantial challenges in treating ovarian cancers. These cancers are also characterized by a high degree of heterogeneity and protracted metastasis, further complicating treatment. Within the ovarian tumor microenvironment, cancer stem-like cells and mechanical stimuli are two underappreciated key elements that play a crucial role in facilitating these outcomes. In this review article, we highlight their roles in modulating ovarian cancer metastasis. Specifically, we outline the clinical relevance of cancer stem-like cells, and challenges associated with their identification and characterization and summarize the ways in which they modulate ovarian cancer metastasis. Further, we review the mechanical cues in the ovarian tumor microenvironment, including, tension, shear, compression and matrix stiffness, that influence (cancer stem-like cells and) metastasis in ovarian cancers. Lastly, we outline the challenges associated with probing these important modulators of ovarian cancer metastasis and provide suggestions for incorporating these cues in basic biology and translational research focused on metastasis. We conclude that future studies on ovarian cancer metastasis will benefit from the careful consideration of mechanical stimuli and cancer stem cells, ultimately allowing for the development of more effective therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...