Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Pharm Sci ; 113(5): 1202-1208, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37879408

RESUMEN

Influenza A viruses (IAV) are a high threat to humanity because of a lack of proper effective antiviral drugs and resistance of viruses to existing vaccines. We describe the sufficient anti-IAV effect of Ans/PL-Dz nanocomposites that contain deoxyribozymes (Dz) immobilized on anatase TiO2 nanoparticles (Ans) through polylysine linker (PL). The Dz-containing nanocomposites appear to be more efficient than the Ans/PL-ODN nanocomposites that contain common oligodeoxyribonucleotides (ODN) targeted to the same RNA regions of the viral genome. The simultaneous use of nanocomposites that contain Dz and ODN, which are targeted to different sites of viral RNA provides a higher overall effect than the independent action of each of them (synergism). The inhibition of IAV with the proposed nanocomposites was shown to be effective, sequence-specific, and dose-dependent. The most efficient Ans/PL-Dz nanocomposite exhibited a high antiviral effect in vivo on mice models. The efficiency of IAV inhibition with this nanocomposite in vitro and in vivo is higher than that for the approved antiflu drug oseltamivir. The results open the prospect of creating a unique antiviral agent suitable for IAV suppression.


Asunto(s)
ADN Catalítico , Virus de la Influenza A , Gripe Humana , Nanopartículas , Titanio , Perros , Animales , Ratones , Humanos , Virus de la Influenza A/genética , Antivirales/farmacología , ADN Catalítico/farmacología , ADN Catalítico/uso terapéutico , Células de Riñón Canino Madin Darby , Gripe Humana/tratamiento farmacológico
2.
Nucleic Acid Ther ; 31(6): 436-442, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34665651

RESUMEN

Newly emerged highly pathogenic A/H7N9 viruses with pandemic potential are effectively transmitted from birds to humans and require the development of novel antiviral drugs. For the first time, we studied the in vitro and in vivo antiviral activity against A/H7N9 of oligodeoxyribonucleotides (ODNs), which were delivered into the cells in the proposed TiO2-based nanocomposites (TiO2∼ODN). The highest inhibition of A/H7N9 in vitro (∼400-fold) and efficient, sequence-specific, and dose-dependent protection (up to 100%) of A/H7N9-infected mice was revealed when ODN was targeted to the conserved terminal 3'-noncoding region of viral (-)RNA. After the treatment with ODN, the virus titer values in the lungs of mice decreased by several orders of magnitude. The TiO2∼ODN nanocomposite did not show toxicity in mice under the treatment conditions. The proposed approach for effective inhibition of the A/H7N9 can be tested against other viruses, for example, new emerging influenza viruses and coronaviruses with pandemic potential.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A , Animales , Antivirales/farmacología , Genoma Viral , Subtipo H7N9 del Virus de la Influenza A/genética , Ratones , Oligonucleótidos , ARN Viral/genética
3.
Eur J Pharm Biopharm ; 162: 92-98, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33753212

RESUMEN

This study describes the effective attack of oligonucleotides on the viral genome of highly pathogenic H5N1 influenza A virus (IAV) in vivo using for the first time the new delivery system consisting of biocompatible low-toxic titanium dioxide nanoparticles and immobilized polylysine-containing oligonucleotides with the native (ODN) and partially modified (ODNm) internucleotide bonds. Intraperitoneal injection of the TiO2•PL-ODN nanocomposite provided 65-70% survival of mice, while intraperitoneal or oral administration of TiO2•PL-ODNm was somewhat more efficient (~80% survival). The virus titer in the lung was reduced by two-three orders of magnitude. The nanocomposites are nontoxic to mice under the used conditions. TiO2 nanoparticles, unbound ODN, and the nanocomposite bearing the random oligonucleotide showed an insignificant protective effect, which indicates the ability of targeted oligonucleotides delivered in mice in the nanocomposites to site-specifically interact with complementary RNAs. The protection of oligonucleotides in nanocomposites by TiO2 nanoparticles and partial modification of the internucleotide bonds provides a continued presence of oligonucleotides in the body for the effective and specific action on the viral RNA. The proposed oligonucleotide delivery system can claim not only to effectively inhibit IAV genes but also to turn off other genes responsible for diseases caused by nucleic acids.


Asunto(s)
Antivirales/administración & dosificación , Portadores de Fármacos/química , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos , Gripe Humana/tratamiento farmacológico , Oligodesoxirribonucleótidos Antisentido/administración & dosificación , Administración Oral , Animales , Modelos Animales de Enfermedad , Perros , Femenino , Genoma Viral/efectos de los fármacos , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/virología , Inyecciones Intraperitoneales , Células de Riñón Canino Madin Darby , Masculino , Ratones , Nanocompuestos/química , ARN Viral/antagonistas & inhibidores , Titanio/química , Carga Viral/efectos de los fármacos
4.
Beilstein J Nanotechnol ; 9: 2516-2525, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30345214

RESUMEN

The development of efficient and convenient systems for the delivery of nucleic-acid-based drugs into cells is an urgent task. А promising approach is the use of various nanoparticles. Silica nanoparticles can be used as vehicles to deliver nucleic acid fragments into cells. In this work, we developed a method for the synthesis of silicon-organic (Si-NH2) non-agglomerated nanoparticles by the hydrolysis of aminopropyltriethoxysilane (APTES). The resulting product forms a clear solution containing nanoparticles in the form of low molecular weight polymer chains with [─Si(OH)(C3H6NH2)O─] monomer units. Oligonucleotides (ODN) were conjugated to the prepared Si-NH2 nanoparticles using the electrostatic interaction between positively charged amino groups of nanoparticles and negatively charged internucleotide phosphate groups in oligonucleotides. The Si-NH2 nanoparticles and Si-NH2·ODN nanocomplexes were characterized by transmission electron microscopy, atomic force microscopy and IR and electron spectroscopy. The size and zeta potential values of the prepared nanoparticles and nanocomplexes were evaluated. Oligonucleotides in Si-NH2·ODN complexes retain their ability to form complementary duplexes. The Si-NH2 Flu nanoparticles and Si-NH2·ODNFlu nanocomplexes were shown by fluorescence microscopy to penetrate into human cells. The Si-NH2 Flu nanoparticles predominantly accumulated in the cytoplasm whereas ODNFlu complexes were predominantly detected in the cellular nuclei. The Si-NH2·ODN nanocomplexes demonstrated a high antisense activity against the influenza A virus in a cell culture at a concentration that was lower than their 50% toxic concentration by three orders of magnitude.

5.
Int J Antimicrob Agents ; 49(6): 703-708, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28412273

RESUMEN

Nucleic-acid-based drugs are a promising class of novel therapeutics; however, their use in medicine is widely limited because of insufficient delivery into cells. This article proposes a new delivery strategy of nucleic acid fragments into cells as components of TiO2-based nanocomposites. For the first time, unmodified Dz molecules were non-covalently immobilized on TiO2 nanoparticles precovered with polylysine (TiO2•PL) with the formation of (TiO2•PL)•Dz nanocomposites. DNAzymes in the proposed nanocomposites were shown to retain their ability to cleave the RNA target in a cell-free system with the same selectivity as unbound Dz molecules. It was shown by confocal laser microscopy that the fluorescein-labelled (TiO2•PL)•DzFlu nanocomposites penetrate into eukaryotic cells, where DzFlu is internalized in the cytoplasm and predominantly in nuclei. Delivery of deoxyribozymes into cells in the proposed nanocomposites permits very efficient interactions with RNA targets inside cells. This was demonstrated by an example of inhibition of H5N1 influenza A virus replication (inhibition by a factor of ca. 3000). This effect was one order of magnitude higher than with using lipofectamine as the transfection agent. The proposed (TiO2•PL)•Dz nanocomposites demonstrated high antiviral activity and are thus potent as nucleic-acid-based drugs.


Asunto(s)
Antivirales/farmacología , ADN Catalítico/farmacología , Portadores de Fármacos/metabolismo , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos , Nanopartículas del Metal , Nanocompuestos , Replicación Viral/efectos de los fármacos , Animales , Antivirales/metabolismo , ADN Catalítico/metabolismo , Perros , Células HeLa , Humanos , Subtipo H5N1 del Virus de la Influenza A/fisiología , Células de Riñón Canino Madin Darby
6.
Beilstein J Nanotechnol ; 7: 1166-1173, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27826491

RESUMEN

Background: The development of new antiviral drugs based on nucleic acids is under scrutiny. An important problem in this aspect is to find the most vulnerable conservative regions in the viral genome as targets for the action of these agents. Another challenge is the development of an efficient system for their delivery into cells. To solve this problem, we proposed a TiO2·PL-DNA nanocomposite consisting of titanium dioxide nanoparticles and polylysine (PL)-containing oligonucleotides. Results: The TiO2·PL-DNA nanocomposites bearing the DNA fragments targeted to different conservative regions of (-)RNA and (+)RNA of segment 5 of influenza A virus (IAV) were studied for their antiviral activity in MDCK cells infected with the H1N1, H5N1, and H3N2 virus subtypes. Within the negative strand of each of the studied strains, the efficiency of DNA fragments increased in the direction of its 3'-end. Thus, the DNA fragment aimed at the 3'-noncoding region of (-)RNA was the most efficient and inhibited the reproduction of different IAV subtypes by 3-4 orders of magnitude. Although to a lesser extent, the DNA fragments targeted at the AUG region of (+)RNA and the corresponding region of (-)RNA were also active. For all studied viral subtypes, the nanocomposites bearing the DNA fragments targeted to (-)RNA appeared to be more efficient than those containing fragments aimed at the corresponding (+)RNA regions. Conclusion: The proposed TiO2·PL-DNA nanocomposites can be successfully used for highly efficient and site-specific inhibition of influenza A virus of different subtypes. Some patterns of localization of the most vulnerable regions in IAV segment 5 for the action of DNA-based drugs were found. The (-)RNA strand of IAV segment 5 appeared to be more sensitive as compared to (+)RNA.

7.
Int J Antimicrob Agents ; 46(1): 125-8, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25963340

RESUMEN

Influenza is a heavy socially significant viral infection that affects humans, birds, and wild and domestic animals. The threat of existing and new highly pathogenic subtypes of influenza A virus (IAV) makes it necessary to develop an effective drug that may affect different IAV strains. For this purpose, oligodeoxynucleotides (DNA fragments) attached to titanium dioxide (TiO2) nanoparticles through a polylysine linker, forming TiO2·PL-DNA nanocomposites, that penetrated into cells without transfection agents were used. For the first time, efficient (≥99.9%) suppression of the reproduction of different subtypes of IAV, including highly pathogenic H5N1 and H1N1, was achieved. These results were obtained using the TiO2·PL-DNA nanocomposite bearing a single antisense oligodeoxynucleotide (0.1µM) targeted to the conserved 3'-noncoding region of RNA segment 5, which is common to all tested strains. Very efficient suppression of the reproduction of different subtypes of IAV was probably achieved due to the use of the proposed delivery system for oligonucleotides in the form of the TiO2·PL-DNA nanocomposites. These results indicate the possibility of creating an efficient drug to affect existing and newly emerging pathogenic IAV strains.


Asunto(s)
Antivirales/metabolismo , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos , Oligodesoxirribonucleótidos Antisentido/genética , Oligodesoxirribonucleótidos Antisentido/metabolismo , Replicación Viral/efectos de los fármacos , Animales , Técnicas de Cultivo de Célula , Perros , Portadores de Fármacos/metabolismo , Subtipo H1N1 del Virus de la Influenza A/fisiología , Subtipo H5N1 del Virus de la Influenza A/fisiología , Células de Riñón Canino Madin Darby , Nanopartículas/metabolismo , Titanio/metabolismo
8.
Bioorg Med Chem ; 23(9): 2168-75, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25801161

RESUMEN

A system for delivery of analogues of AZT-triphosphates (AZT*TP) based on SiO2 nanoparticles was proposed. For this purpose, a simple and versatile method was developed for the preparation of SiO2∼dNTP conjugates using the 'click'-reaction between AZTTP and premodified nanoparticles containing the alkyne groups. The substrate properties of SiO2∼AZT*TP were tested using Klenow fragment and HIV reverse transcriptase. The 3'-triazole derivatives of thymidine triphosphate being a part of the SiO2∼AZT*TP nanocomposites were shown to be incorporated into the growing DNA chain. It was shown by confocal microscopy that the proposed SiO2∼AZT*TP nanocomposites penetrate into cells. These nanocomposites were shown to inhibit the reproduction of POX and Herpes viruses at nontoxic concentrations.


Asunto(s)
Didesoxinucleótidos/administración & dosificación , Didesoxinucleótidos/química , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Dióxido de Silicio/química , Simplexvirus/efectos de los fármacos , Nucleótidos de Timina/administración & dosificación , Nucleótidos de Timina/química , Triazoles/química , Virus de la Viruela/efectos de los fármacos , Zidovudina/análogos & derivados , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Chlorocebus aethiops , Química Clic , Didesoxinucleótidos/farmacología , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Simplexvirus/crecimiento & desarrollo , Relación Estructura-Actividad , Nucleótidos de Timina/farmacología , Virus de la Viruela/crecimiento & desarrollo , Células Vero , Zidovudina/administración & dosificación , Zidovudina/química , Zidovudina/farmacología
9.
Bioorg Med Chem ; 21(3): 703-11, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23280146

RESUMEN

A system for delivery of analogues of 2'-deoxyribonucleoside triphosphate (dNTP) based on SiO(2) nanoparticles was proposed. A simple and versatile method was developed for the preparation of SiO(2)-dNTP conjugates using the 'click'-reaction between premodified nanoparticles containing the azido groups and dNTP containing the alkyne-modified γ-phosphate group. The substrate properties of SiO(2)-dNTP were tested using Klenow fragment and HIV reverse transcriptase. Nucleoside triphosphates being a part of the SiO(2)-dNTP nanocomposites were shown to be incorporated into the growing DNA chain. The rate of polymerization with the use of SiO(2)-dNTP or common dNTP in case of HIV reverse transcriptase differed insignificantly. It was shown by confocal microscopy that the proposed SiO(2)-dNTP nanocomposites bearing the fluorescent label penetrate into cells and even into cellular nuclei.


Asunto(s)
Desoxirribonucleótidos/farmacocinética , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Polifosfatos/farmacocinética , Dióxido de Silicio/química , Desoxirribonucleótidos/síntesis química , Desoxirribonucleótidos/química , Células HeLa , Humanos , Microscopía Confocal , Estructura Molecular , Polimerizacion , Polifosfatos/síntesis química , Polifosfatos/química
10.
Sci Rep ; 2: 756, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23091696

RESUMEN

Nanoparticles are used to solve the current drug delivery problem. We present a high-performance method for efficient and selective action on nucleic acid target in cells using unique TiO(2)·PL-DNA nanocomposites (polylysine-containing DNA fragments noncovalently immobilized onto TiO(2) nanoparticles capable of transferring DNA). These nanocomposites were used for inhibition of human influenza A (H3N2) virus replication in infected MDCK cells. They showed a low toxicity (TC(50) ≈ 1800 µg/ml) and a high antiviral activity (>99.9% inhibition of the virus replication). The specificity factor (antisense effect) appeared to depend on the delivery system of DNA fragments. This factor for nanocomposites is ten-times higher than for DNA in the presence of lipofectamine. IC(50) for nanocomposites was estimated to be 1.5 µg/ml (30 nM for DNA), so its selectivity index was calculated as ~1200. Thus, the proposed nanocomposites are prospective for therapeutic application.


Asunto(s)
Antivirales/farmacología , Portadores de Fármacos/farmacología , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Nanocompuestos/química , Polilisina/química , ARN Viral/antagonistas & inhibidores , Titanio/química , Regiones no Traducidas 3' , Animales , Antivirales/síntesis química , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/genética , Supervivencia Celular/efectos de los fármacos , Perros , Relación Dosis-Respuesta a Droga , Portadores de Fármacos/síntesis química , Subtipo H3N2 del Virus de la Influenza A/crecimiento & desarrollo , Concentración 50 Inhibidora , Células de Riñón Canino Madin Darby , Nanopartículas del Metal/química , ARN Viral/genética , Carga Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos
11.
J Nanosci Nanotechnol ; 12(3): 1812-20, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22754985

RESUMEN

The use of various nanoparticles is a promising way to solve the current problem of drug delivery in medicine and biology. Nanocomposites consisting of titanium dioxide and oligonucleotides noncovalently attached to nanoparticles through the polylysine linker (TiO2 x PL-DNA) have been designed to deliver of DNA fragments into cells. Three forms of TiO2 nanoparticles (amorphous, anatase, and brookite) were used for construction of nanocomposites. The size, morphology, and chemical composition of TiO2 nanoparticles and TiO2 x PL-DNA nanocomposites were characterized. DNA fragments in the proposed nanocomposites were shown to retain their ability to form complementary complexes. TiO2 x PL-DNA nanocomposites independently on the form of nanoparticles were shown by confocal microscopy to penetrate into HeLa cells without any transfection agents and physical impact. The presented type of nanocomposites can be applied in the thriving technology of drug delivery to achieve high therapeutic and biological efficacy.


Asunto(s)
Nanocompuestos , Oligonucleótidos/química , Titanio/química , Animales , Secuencia de Bases , Células HeLa , Humanos , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión
12.
Biotechnol J ; 2(7): 879-85, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17526055

RESUMEN

Various materials, such as glass, plastic, metals, etc., are utilized for preparing DNA chips. In each particular case special approaches are used for immobilization of different oligonucleotide derivatives on the solid supports. We describe a general technique for DNA chips preparation on various unmodified surfaces using one type of oligonucleotide derivative, polylysine-oligonucleotide conjugates (PL-oligo). A long polyamine spacer in the PL-oligo conjugates provides a durable irreversible non-covalent immobilization onto a variety of solid supports and enough distance between oligonucleotides and the surface. The resulting DNA chips were shown to be useful for the detection of PCR DNA fragments and to be sensitive to single nucleotide discrepancies. They represent a promising instrument for revealing genetic diseases, genotyping viruses and bacteria, and for displaying their drug-resistant strains.


Asunto(s)
Sondas de ADN/química , Sondas de ADN/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Polilisina/química , Materiales Biocompatibles Revestidos/química , Diseño de Equipo , Análisis de Falla de Equipo
13.
RNA Biol ; 2(2): 63-9, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17132945

RESUMEN

Positioning of mRNA 3' of the A site codon was studied with the use of short mRNA analogues carrying a UUU triplet at the 5'-termini and a perfluorophenylazide group at either the N7 atom of the guanosine or the C5 atom of the uridine 3' of the triplet. Modified nucleotides were directed to positions +7, +9 or +12 with respect to the first nucleotide of the P site codon by tRNA(Phe) cognate to the UUU triplet targeted to the P site. Mild UV-irradiation resulted in cross-linking of the mRNA analogues to the 18S rRNA and to 40S proteins, the yield of cross-linking depending on the nature of the mRNA nucleotide bearing the modified group and its position on the ribosome. In addition, the yield of cross-linking to the 18S rRNA decreased strongly when the modified nucleotide was moved from position +7 to position +12. All the mRNA analogues cross-linked to the 18S rRNA nucleotides that had been found earlier at the decoding site, namely, to the invariant dinucleotide A1824/A1825 and the variable A1823 in the 3'-minidomain of the 18S rRNA, and also to the invariant nucleotide C1698 in the 3'-minidomain and the conserved region 605-620 in the apical region of helix 18 in the 5'-domain. The results indicate that (1) the mRNA makes a sharp turn between positions +6 and +7, (2) the triplet immediately 3' of the A site codon neighbors the 18S rRNA and proteins, and (3) the codon 3' of the triplet mentioned is surrounded mainly by proteins.


Asunto(s)
Conformación de Ácido Nucleico , ARN Mensajero/química , Ribosomas/química , Secuencia de Bases , Escherichia coli , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Secuencias Reguladoras de Ácido Ribonucleico
14.
Biochem J ; 387(Pt 1): 139-45, 2005 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15527424

RESUMEN

A sequence-specific modification of the human 5.8 S rRNA in isolated 60 S subunits, non-programmed 80 S ribosomes and ribosomes complexed with mRNA and tRNAs was studied with the use of a derivative of the nonaribonucleotide UCUGUGUUU bearing a perfluorophenylazide group on the C-5 atom of the 5'-terminal uridine. Part of the oligonucleotide moiety of the derivative was complementary to the 5.8 S rRNA sequence ACACA in positions 82-86 flanked by two guanines at the 5'-terminus. The target for the cross-linking was identified as nucleotide G89 on the 5.8 S RNA. In addition, several ribosomal proteins were modified by the oligonucleotide derivative bound to the 5.8 S rRNA and proteins L6 and L8 were among them. Application of these results to known cryo-electron microscopy images of eukaryotic 60 S subunits made it possible to suggest that the central part of the 5.8 S rRNA containing the sequence 82-86 and proteins L6 and L8 are located at the base of the L1 stalk of the 60 S subunit. The efficacy of cross-linking in non-programmed 80 S ribosomes was much lower than in isolated 60 S subunits and in programmed 80 S ribosomes. We suggest that the difference in the accessibilities of the central part of the 5.8 S rRNA in the programmed and non-programmed 80 S ribosomes is caused by a conformational switch that seems to be required to dissociate the 80 S ribosomes into the subunits after termination of translation to allow initiation of translation of a new template.


Asunto(s)
Reordenamiento Génico/fisiología , ARN Ribosómico 5.8S/metabolismo , Ribosomas/metabolismo , Secuencia de Bases/genética , Reactivos de Enlaces Cruzados/metabolismo , Humanos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN Ribosómico 5.8S/química , Ribonucleótidos/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/química
15.
FEBS Lett ; 514(1): 96-101, 2002 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-11904189

RESUMEN

To study positioning of the mRNA stop signal with respect to polypeptide chain release factors (RFs) and ribosomal components within human 80S ribosomes, photoreactive mRNA analogs were applied. Derivatives of the UUCUAAA heptaribonucleotide containing the UUC codon for Phe and the stop signal UAAA, which bore a perfluoroaryl azido group at either the fourth nucleotide or the 3'-terminal phosphate, were synthesized. The UUC codon was directed to the ribosomal P site by the cognate tRNA(Phe), targeting the UAA stop codon to the A site. Mild UV irradiation of the ternary complexes consisting of the 80S ribosome, the mRNA analog and tRNA resulted in tRNA-dependent crosslinking of the mRNA analogs to the 40S ribosomal proteins and the 18S rRNA. mRNA analogs with the photoreactive group at the fourth uridine (the first base of the stop codon) crosslinked mainly to protein S15 (and much less to S2). For the 3'-modified mRNA analog, the major crosslinking target was protein S2, while protein S15 was much less crosslinked. Crosslinking of eukaryotic (e) RF1 was entirely dependent on the presence of a stop signal in the mRNA analog. eRF3 in the presence of eRF1 did not crosslink, but decreased the yield of eRF1 crosslinking. We conclude that (i) proteins S15 and S2 of the 40S ribosomal subunit are located near the A site-bound codon; (ii) eRF1 can induce spatial rearrangement of the 80S ribosome leading to movement of protein L4 of the 60S ribosomal subunit closer to the codon located at the A site; (iii) within the 80S ribosome, eRF3 in the presence of eRF1 does not contact the stop codon at the A site and is probably located mostly (if not entirely) on the 60S subunit.


Asunto(s)
Codón de Terminación/metabolismo , Factores de Terminación de Péptidos/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Factor 1 Eucariótico de Iniciación/química , Factor 1 Eucariótico de Iniciación/metabolismo , Humanos , ARN Mensajero/síntesis química , ARN Mensajero/química , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA