Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Case Rep ; 18(1): 95, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38351155

RESUMEN

BACKGROUND: Ependymomas are the third most common central nervous system tumor in the pediatric population; however, spinal ependymomas in children are rare. Ependymomas affecting the spinal cord most frequently occur in adults of 20-40 years of age. The current World Health Organization classification system for ependymomas is now composed of ten different entities based on histopathology, location, and molecular studies, with evidence that the new classification system more accurately predicts clinical outcomes. CASE PRESENTATION: We present the case of a 16-year-old Caucasian female patient with a history of type 2 neurofibromatosis with multiple schwannomas, meningioma, and spinal ependymoma. Chromosome analysis of the harvested spinal ependymoma tumor sample revealed a 46,XX,-6,+7,-22,+mar[16]/46,XX[4] karyotype. Subsequent OncoScan microarray analysis of the formalin-fixed paraffin-embedded tumor sample confirmed + 7, -22 and clarified that the marker chromosome represents chromothripsis of the entire chromosome 6 with more than 100 breakpoints. Fluorescent in situ hybridization and microarray analysis showed no evidence of MYCN amplification. The final integrated pathology diagnosis was spinal ependymoma (central nervous system World Health Organization grade 2 with no MYCN amplification. CONCLUSION: This case adds to the existing literature of pediatric patients with spinal ependymomas and expands the cytogenetic findings that may be seen in patients with this tumor type. This case also highlights the value of cytogenetics and microarray analysis in solid tumors to provide a more accurate molecular diagnosis.


Asunto(s)
Cromotripsis , Ependimoma , Neoplasias Meníngeas , Neoplasias de la Médula Espinal , Adulto , Humanos , Niño , Femenino , Adolescente , Cromosomas Humanos Par 6 , Hibridación Fluorescente in Situ , Neoplasias de la Médula Espinal/diagnóstico , Neoplasias de la Médula Espinal/genética , Neoplasias de la Médula Espinal/patología , Ependimoma/diagnóstico , Ependimoma/genética , Ependimoma/patología
2.
Cancer Genet ; 274-275: 10-20, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36917897

RESUMEN

Though rare, pediatric high-grade gliomas (pHGG) are a leading cause of cancer-related mortality in children. We wanted to determine whether our currently available clinical laboratory methods could better define diagnosis for pHGG that had been archived at our institution for the past 20 years (1998 to 2017). We investigated 33 formalin-fixed paraffin-embedded pHGG using ThermoFisher Oncoscan SNP microarray with somatic mutation analysis, Sanger sequencing, and whole genome sequencing. These data were correlated with historical histopathological, chromosomal, clinical, and radiological data. Tumors were subsequently classified according to the 2021 WHO Classification of Paediatric CNS Tumours. All 33 tumors were found to have genetic aberrations that placed them within a 2021 WHO subtype and/or provided prognostic information; 6 tumors were upgraded from WHO CNS grade 3 to grade 4. New pHGG genetic features were found including two small cell glioblastomas with H3 G34 mutations not previously described; one tumor with STRN-NTRK2 fusion; and a congenital diffuse leptomeningeal glioneuronal tumor without a chromosomal 1p deletion but with KIAA1549-BRAF fusion. Overall, the combination of laboratory methods yielded key information for tumor classification. Thus, even small studies of these uncommon tumor types may yield new genetic features and possible new subtypes that warrant future investigations.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Glioma , Niño , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioma/genética , Glioma/patología , Neoplasias del Sistema Nervioso Central/genética , Mutación/genética , Organización Mundial de la Salud
3.
Clin Chem ; 68(9): 1177-1183, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35869940

RESUMEN

BACKGROUND: Laboratories utilizing next-generation sequencing align sequence data to a standardized human reference genome (HRG). Several updated versions, or builds, have been released since the original HRG in 2001, including the Genome Reference Consortium Human Build 38 (GRCh38) in 2013. However, most clinical laboratories still use GRCh37, which was released in 2009. We report our laboratory's clinical validation of GRCh38. METHODS: Migration to GRCh38 was validated by comparing the coordinates (lifting over) of 9443 internally curated variants from GRCh37 to GRCh38, globally comparing protein coding sequence variants aligned with GRCh37 vs GRCh38 from 917 exomes, assessing genes with known discrepancies, comparing coverage differences, and establishing the analytic sensitivity and specificity of variant detection using Genome in a Bottle data. RESULTS: Eight discrepancies, due to strand swap or reference base, were observed. Three clinically relevant variants had the GRCh37 alternate allele as the reference allele in GRCh38. A comparison of 88 295 calls between builds identified 8 disease-associated genes with sequence differences: ABO, BNC2, KIZ, NEFL, NR2E3, PTPRQ, SHANK2, and SRD5A2. Discrepancies in coding regions in GRCh37 were resolved in GRCh38. CONCLUSIONS: There were a small number of clinically significant changes between the 2 genome builds. GRCh38 provided improved detection of nucleotide changes due to the resolution of discrepancies present in GRCh37. Implementation of GRCh38 results in more accurate and consistent reporting.


Asunto(s)
Genoma Humano , Laboratorios , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa , Alelos , Proteínas de Ciclo Celular , Exoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Proteínas de la Membrana , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores
4.
J Mol Diagn ; 23(5): 651-657, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33631350

RESUMEN

The most recent build of the human reference genome, GRCh38, was released in 2013. However, many laboratories performing next-generation sequencing (NGS) continue to align to GRCh37. Our aim was to assess the number of clinical diagnostic laboratories that have migrated to GRCh38 and discern factors impeding migration for those still using GRCh37. A brief, five-question survey was electronically administered to 71 clinical laboratories offering constitutional NGS-based testing and analyzed categorically. Twenty-eight responses meeting inclusion criteria were collected from 24 academic and four commercial diagnostic laboratories. Most of these (14; 50%) reported volumes of <500 NGS-based tests in 2019. Only two respondents (7%) had already migrated entirely to GRCh38; most laboratories (15; 54%) had no plans to migrate. The two prevailing reasons for not yet migrating were as follows: laboratories did not feel the benefits outweighed the time and monetary costs (14; 50%); and laboratories had insufficient staff to facilitate the migration (12; 43%). These data, although limited, suggest most clinical molecular laboratories are reluctant to migrate to GRCh38, and there appear to be multiple obstacles to overcome before GRCh38 is widely adopted.


Asunto(s)
Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Laboratorios/normas , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN/normas , Exactitud de los Datos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Valores de Referencia , Análisis de Secuencia de ADN/métodos
5.
Eur J Med Genet ; 63(1): 103636, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30836150

RESUMEN

Copy number variations (CNVs) of the CNTN6 gene - a member of the contactin gene superfamily - have been previously proposed to have an association with neurodevelopmental and autism spectrum disorders. However, no functional evidence has been provided to date and phenotypically normal and mildly affected carriers complicate the interpretation of this aberration. In view of conflicting reports on the pathogenicity of CNVs involving CNTN6 and association with different phenotypes, we, independently, evaluated clinical features of nineteen patients with detected CNV of CNTN6 as part of their clinical microarray analysis at Children's Mercy and Nationwide Children's Hospitals for the period of 2008-2015. The clinical presentations of these patients were variable making it difficult to establish genotype-phenotype correlations. CNVs were inherited in six patients. For thirteen patients, inheritance pattern was not established due to unavailability of parental samples for testing. In three cases CNV was inherited from a healthy parent and in three cases from a parent with neurodevelopmental symptoms. Of the nineteen patients, four had a separate genetic abberation in addition to CNV of the CNTN6 that could independently explain their respective phenotypes. Separately, CNTN6 sequencing was performed on an autism spectrum disorder (ASD) research cohort of 94 children from 80 unrelated families. We found no difference in frequency of rare coding variants between the cohort of patients and controls. We conclude that CNVs involving CNTN6 alone seem to be most likely a neutral variant or a possible modifier rather than a disease-causing variant. Patients with CNVs encompassing CNTN6 could benefit from additional genetic testing since a clinical diagnosis due to a CNV of CNTN6 alone is still questionable.


Asunto(s)
Contactinas/genética , Predisposición Genética a la Enfermedad , Trastornos del Neurodesarrollo/genética , Adolescente , Niño , Femenino , Dosificación de Gen/genética , Estudios de Asociación Genética , Humanos , Masculino , Análisis por Micromatrices , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/patología , Fenotipo
6.
Am J Med Genet A ; 167A(12): 3219-25, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26360630

RESUMEN

Feingold syndrome-2 has been recently shown to be caused by germline heterozygous deletions of MIR17HG with 10 reported patients to date. Manifestations common to both Feingold syndrome-1 and Feingold syndrome-2 include microcephaly, short stature, and brachymesophalangy; but those with Feingold syndrome-2 lack gastrointestinal atresias. Here we describe a 14-year-old male patient who presented to our Cardiovascular Genetics Clinic with a history of a bicuspid aortic valve with aortic stenosis, short stature, hearing loss, and mild learning disabilities. Upon examination he was noted to have dysmorphic features and brachydactyly of his fingers and toes. His head circumference was 54.5 cm (25th-50th centile) and his height was 161.3 cm (31st centile) after growth hormone therapy. A skeletal survey noted numerous abnormalities prompting suspicion for Feingold syndrome. A comparative genomic hybridization microarray was completed and a ∼3.6 Mb interstitial heterozygous deletion at 13q31.3 including MIR17HG was found consistent with Feingold syndrome-2. Clinically, this patient has the characteristic digital anomalies and short stature often seen in Feingold syndrome-2 with less common features of a congenital heart defect and hearing loss. Although non-skeletal features have been occasionally reported in Feingold syndrome-1, only one other patient with a 13q31 microdeletion including MIR17HG has had non-skeletal manifestations. Additionally, our patient does not have microcephaly and, to our knowledge, is the first reported pediatric patient with Feingold syndrome-2 without this feature. This report illustrates significant phenotypic variability within the clinical presentation of Feingold syndrome-2 and highlights considerable overlap with Feingold syndrome-1.


Asunto(s)
Anomalías Múltiples/patología , Estenosis de la Válvula Aórtica/patología , Braquidactilia/patología , Enanismo/patología , Dedos/anomalías , Pérdida Auditiva/patología , Dedos del Pie/anomalías , Anomalías Múltiples/genética , Adolescente , Estenosis de la Válvula Aórtica/congénito , Estenosis de la Válvula Aórtica/genética , Braquidactilia/genética , Deleción Cromosómica , Cromosomas Humanos Par 13/genética , Hibridación Genómica Comparativa , Enanismo/genética , Dedos/patología , Pérdida Auditiva/genética , Humanos , Masculino , MicroARNs/genética , Pronóstico , ARN Largo no Codificante , ARN no Traducido/genética , Dedos del Pie/patología
7.
Eur J Hum Genet ; 22(1): 57-63, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23632792

RESUMEN

Copy number variations associated with abnormal gene dosage have an important role in the genetic etiology of many neurodevelopmental disorders, including intellectual disability (ID) and autism. We hypothesize that the chromosome 2q23.1 region encompassing MBD5 is a dosage-dependent region, wherein deletion or duplication results in altered gene dosage. We previously established the 2q23.1 microdeletion syndrome and report herein 23 individuals with 2q23.1 duplications, thus establishing a complementary duplication syndrome. The observed phenotype includes ID, language impairments, infantile hypotonia and gross motor delay, behavioral problems, autistic features, dysmorphic facial features (pinnae anomalies, arched eyebrows, prominent nose, small chin, thin upper lip), and minor digital anomalies (fifth finger clinodactyly and large broad first toe). The microduplication size varies among all cases and ranges from 68 kb to 53.7 Mb, encompassing a region that includes MBD5, an important factor in methylation patterning and epigenetic regulation. We previously reported that haploinsufficiency of MBD5 is the primary causal factor in 2q23.1 microdeletion syndrome and that mutations in MBD5 are associated with autism. In this study, we demonstrate that MBD5 is the only gene in common among all duplication cases and that overexpression of MBD5 is likely responsible for the core clinical features present in 2q23.1 microduplication syndrome. Phenotypic analyses suggest that 2q23.1 duplication results in a slightly less severe phenotype than the reciprocal deletion. The features associated with a deletion, mutation or duplication of MBD5 and the gene expression changes observed support MBD5 as a dosage-sensitive gene critical for normal development.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Proteínas de Unión al ADN/genética , Discapacidades del Desarrollo/genética , Trisomía/genética , Adolescente , Niño , Trastornos Generalizados del Desarrollo Infantil/etiología , Trastornos Generalizados del Desarrollo Infantil/patología , Preescolar , Deleción Cromosómica , Cromosomas Humanos Par 2/genética , Hibridación Genómica Comparativa , Discapacidades del Desarrollo/etiología , Discapacidades del Desarrollo/patología , Epigénesis Genética , Femenino , Dosificación de Gen , Humanos , Lactante , Masculino
8.
Forensic Sci Int Genet ; 7(5): 475-81, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23948316

RESUMEN

Short tandem repeat (STR) loci are commonly used in forensic casework, familial analysis for human identification, and for monitoring hematopoietic cell engraftment after bone marrow transplant. Unexpected genetic variation leading to sequence and length differences in STR loci can complicate STR typing, and presents challenges in casework interpretation. Copy number variation (CNV) is a relatively recently identified form of genetic variation consisting of genomic regions present at variable copy numbers within an individual compared to a reference genome. Large scale population studies have demonstrated that likely all individuals carry multiple regions with CNV of 1kb in size or greater in their genome. To date, no study correlating genomic regions containing STR loci with CNV has been conducted. In this study, we analyzed results from 32,850 samples sent for clinical array comparative genomic hybridization (CGH) analysis for the presence of CNV at regions containing the 13 CODIS (Combined DNA Index System) STR, and the Amelogenin X (AMELX) and Amelogenin Y (AMELY) loci. Thirty-two individuals with CNV involving STR loci on chromosomes 2, 4, 7, 11, 12, 13, 16, and 21, and twelve with CNV involving the AMELX/AMELY loci were identified. These results were correlated with data from publicly available databases housing information on CNV identified in normal populations and additional clinical cases. These collective results demonstrate the presence of CNV in regions containing 9 of the 13 CODIS STR and AMELX/Y loci. Further characterization of STR profiles within regions of CNV, additional cataloging of these variants in multiple populations, and contributing such examples to the public domain will provide valuable information for reliable use of these loci.


Asunto(s)
Amelogenina/genética , Variaciones en el Número de Copia de ADN , Repeticiones de Microsatélite , Trasplante de Médula Ósea , Hibridación Genómica Comparativa/métodos , Femenino , Genética Forense , Genoma Humano , Humanos , Hibridación Fluorescente in Situ , Masculino , Paternidad
9.
Am J Med Genet A ; 158A(8): 1924-33, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22786685

RESUMEN

The presence of more than one cell line in an individual may often be missed by classical cytogenetic analysis due to a low percentage of affected cells or analysis of cells from an unaffected or less affected germ layer. Array comparative genomic hybridization (aCGH) from whole blood or tissue is an important adjunct to standard karyotyping due to its ability to detect genomic imbalances that are below the resolution of karyotype analysis. We report results from three unrelated patients in whom aCGH revealed mosaicism not identified by peripheral blood chromosome analysis. This study further illustrates the important application of aCGH in detecting tissue-specific mosaicism, thereby leading to an improvement in the ability to provide a diagnosis for patients with normal chromosome analysis and dysmorphic features, congenital anomalies, and/or developmental delay.


Asunto(s)
Hibridación Genómica Comparativa , Mosaicismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Adolescente , Adulto , Femenino , Humanos , Hibridación Fluorescente in Situ , Recién Nacido , Masculino
10.
Am J Hum Genet ; 89(4): 551-63, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21981781

RESUMEN

Persons with neurodevelopmental disorders or autism spectrum disorder (ASD) often harbor chromosomal microdeletions, yet the individual genetic contributors within these regions have not been systematically evaluated. We established a consortium of clinical diagnostic and research laboratories to accumulate a large cohort with genetic alterations of chromosomal region 2q23.1 and acquired 65 subjects with microdeletion or translocation. We sequenced translocation breakpoints; aligned microdeletions to determine the critical region; assessed effects on mRNA expression; and examined medical records, photos, and clinical evaluations. We identified a single gene, methyl-CpG-binding domain 5 (MBD5), as the only locus that defined the critical region. Partial or complete deletion of MBD5 was associated with haploinsufficiency of mRNA expression, intellectual disability, epilepsy, and autistic features. Fourteen alterations, including partial deletions of noncoding regions not typically captured or considered pathogenic by current diagnostic screening, disrupted MBD5 alone. Expression profiles and clinical characteristics were largely indistinguishable between MBD5-specific alteration and deletion of the entire 2q23.1 interval. No copy-number alterations of MBD5 were observed in 7878 controls, suggesting MBD5 alterations are highly penetrant. We surveyed MBD5 coding variations among 747 ASD subjects compared to 2043 non-ASD subjects analyzed by whole-exome sequencing and detected an association with a highly conserved methyl-CpG-binding domain missense variant, p.79Gly>Glu (c.236G>A) (p = 0.012). These results suggest that genetic alterations of MBD5 cause features of 2q23.1 microdeletion syndrome and that this epigenetic regulator significantly contributes to ASD risk, warranting further consideration in research and clinical diagnostic screening and highlighting the importance of chromatin remodeling in the etiology of these complex disorders.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Cromosomas Humanos Par 2 , Proteínas de Unión al ADN/genética , Epilepsia/genética , Eliminación de Gen , Discapacidad Intelectual/genética , Adolescente , Adulto , Estudios de Casos y Controles , Niño , Preescolar , Islas de CpG , Epigénesis Genética , Femenino , Humanos , Masculino , Fenotipo , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...