Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Stem Cell Reports ; 17(6): 1303-1317, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35594858

RESUMEN

Trophoblast stem cells (TSCs) have recently been derived from human embryos and early-first-trimester placenta; however, aside from ethical challenges, the unknown disease potential of these cells limits their scientific utility. We have previously established a bone morphogetic protein 4 (BMP4)-based two-step protocol for differentiation of primed human pluripotent stem cells (hPSCs) into functional trophoblasts; however, those trophoblasts could not be maintained in a self-renewing TSC-like state. Here, we use the first step from this protocol, followed by a switch to newly developed TSC medium, to derive bona fide TSCs. We show that these cells resemble placenta- and naive hPSC-derived TSCs, based on their transcriptome as well as their in vitro and in vivo differentiation potential. We conclude that primed hPSCs can be used to generate functional TSCs through a simple protocol, which can be applied to a widely available set of existing hPSCs, including induced pluripotent stem cells, derived from patients with known birth outcomes.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Diferenciación Celular , Femenino , Humanos , Placenta , Embarazo , Trofoblastos
3.
Biol Reprod ; 106(3): 540-550, 2022 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-34791028

RESUMEN

The Bone Morphogenetic Protein (BMP) pathway is involved in numerous developmental processes, including cell growth, apoptosis, and differentiation. In mouse embryogenesis, BMP signaling is a well-known morphogen for both mesoderm induction and germ cell development. Recent evidence points to a potential role in development of the extraembryonic compartment, including trophectoderm-derived tissues. In this study, we investigated the effect of BMP signaling in both mouse and human trophoblast stem cells (TSC) in vitro, evaluating the expression and activation of the BMP signaling response machinery, and the effect of BMP signaling manipulation during TSC maintenance and differentiation. Both mouse trophoblast stem cells (mTSC) and human trophoblast stem cells (hTSC) expressed various BMP ligands and the receptors BMPR1A and BMPR2, necessary for BMP response, and displayed maximal active BMP signaling when undifferentiated. We also observed a conserved modulatory role of BMP signaling during trophoblast differentiation, whereby maintenance of active BMP signaling blunted differentiation of TSC in both species. Conversely, the effect of BMP signaling on the undifferentiated state of TSC appeared to be species-specific, with SMAD-independent signaling important in maintenance of mTSC, and a more subtle role for both SMAD-dependent and -independent BMP signaling in hTSC. Altogether, these data establish an autocrine role for the BMP pathway in the trophoblast compartment. As specification and correct differentiation of the extraembryonic compartment are fundamental for implantation and early placental development, insights on the role of the BMP signaling in early development might prove useful in the setting of in vitro fertilization as well as targeting trophoblast-associated placental dysfunction.


Asunto(s)
Placenta , Trofoblastos , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/fisiología , Femenino , Humanos , Ratones , Placenta/metabolismo , Embarazo , Células Madre/metabolismo , Trofoblastos/metabolismo
4.
Front Cell Dev Biol ; 9: 702046, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34540826

RESUMEN

During pregnancy, conceptus-derived extravillous trophoblast (EVT) invades the endomyometrium, anchors the placenta to the maternal uterus, and remodels the spiral arteries in order to establish maternal blood supply to the fetoplacental unit. Recent reports have described early gestation EVT as polyploid and senescent. Here, we extend these reports by performing comprehensive profiling of both the genomic organization and transcriptome of first trimester and term EVT. We define pathways and gene regulatory networks involved in both initial differentiation and maturation of this important trophoblast lineage at the maternal-fetal interface. Our results suggest that like first trimester EVT, term EVT undergoes senescence and endoreduplication, is primarily tetraploid, and lacks high rates of copy number variations. Additionally, we have highlighted senescence and polyploidy-related genes, pathways, networks, and transcription factors that appeared to be important in normal EVT differentiation and maturation and validated a key role for the unfolded protein response in this context.

5.
Stem Cell Res ; 56: 102507, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34454392

RESUMEN

Human trophoblast stem cells (hTSC) can be isolated from first trimester placenta but not from term placenta. Here we demonstrate that villous cytotrophoblasts (vCTB) from term placenta can be reprogrammed into induced trophoblastic stem-like cells (iTSC) by introducing sets of transcription factors. The iTSCs express TSC markers such as GATA3, TEAD4 and ELF5, and are multipotent, validated by their differentiation into both extravillous trophoblasts (EVT) and syncytiotrophoblasts (STB) in vitro and in vivo. The iTSC can be passaged indefinitely in vitro without slowing of growth. The transcriptome profile of these cells closely resembles the profile of hTSC isolated from first trimester placentae but different from the term placental vCTB from which they originated. The ability to reprogram cells from term placenta into iTSC will allow study of early gestation events which impact placental function later in gestation, including preeclampsia and spontaneous preterm birth.


Asunto(s)
Nacimiento Prematuro , Trofoblastos , Diferenciación Celular , Proteínas de Unión al ADN , Femenino , Humanos , Recién Nacido , Proteínas Musculares , Placenta , Embarazo , Células Madre , Factores de Transcripción de Dominio TEA , Factores de Transcripción/genética
6.
J Trauma Acute Care Surg ; 90(5): 866-873, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33728886

RESUMEN

BACKGROUND: Traumatic brain injury is the leading cause of acquired neurologic disability in children. In our model of pediatric traumatic brain injury, controlled cortical impact (CCI) in rat pups, docosahexaenoic acid (DHA) improved lesion volume and cognitive testing as late as postinjury day (PID) 50. Docosahexaenoic acid decreased proinflammatory messenger RNA (mRNA) in microglia and macrophages at PIDs 3 and 7, but not 30. We hypothesized that DHA affected inflammatory markers differentially relative to impact proximity, early and persistently after CCI. METHODS: To provide a temporal snapshot of regional neuroinflammation, we measured 18-kDa translocator protein (TSPO) binding using whole brain autoradiography at PIDs 3, 7, 30, and 50. Guided by TSPO results, we measured mRNA levels in contused cortex and underlying hippocampus for genes associated with proinflammatory and inflammation-resolving states at PIDs 2 and 3. RESULTS: Controlled cortical impact increased TSPO binding at all time points, most markedly at PID 3 and in regions closest to impact, not blunted by DHA. Controlled cortical impact increased cortical and hippocampal mRNA proinflammatory markers, blunted by DHA at PID 2 in hippocampus. CONCLUSION: Controlled cortical impact increased TSPO binding in the immature brain in a persistent manner more intensely with more severe injury, not altered by DHA. Controlled cortical impact increased PIDs 2 and 3 mRNA levels of proinflammatory and inflammation-resolving genes. Docosahexaenoic acid decreased proinflammatory markers associated with inflammasome activation at PID 2. We speculate that DHA's salutary effects on long-term outcomes result from early effects on the inflammasome. Future studies will examine functional effects of DHA on microglia both early and late after CCI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/patología , Encéfalo/efectos de los fármacos , Ácidos Docosahexaenoicos/farmacología , Expresión Génica/efectos de los fármacos , Inflamación/patología , Fármacos Neuroprotectores/farmacología , Animales , Lesiones Encefálicas/metabolismo , Modelos Animales de Enfermedad , Masculino , Unión Proteica/efectos de los fármacos , ARN Mensajero/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
7.
Behav Brain Res ; 378: 112295, 2020 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-31618622

RESUMEN

Traumatic brain injury (TBI) is the leading cause of acquired neurologic disability in children, particularly in those under four years old. During this period, rapid brain growth demands higher Docosahexaenoic Acid (DHA) intake. DHA is an essential fatty acid and brain cell component derived almost entirely from the diet. DHA improved neurologic outcomes and decreased inflammation after controlled cortical impact (CCI) in 17-day old (P17) rats, our established model of pediatric TBI. In adult rodents, TBI decreases brain DHA. We hypothesized that CCI would decrease rat brain DHA at post injury day (PID) 60, blunted by 0.1% DHA diet. We quantitated fatty acids using Gas Chromatography-Mass Spectrometry. We provided 0.1% DHA before CCI to ensure high DHA in dam milk. We compared brain DHA in rats after 60 days of regular (REG) or DHA diet to SHAM pups on REG diet. Brain DHA decreased in REGCCI, not in DHACCI, relative to SHAMREG. In a subsequent experiment, we gave rat pups DHA or vehicle intraperitoneally after CCI followed by DHA or REG diet for 60 days. REG increased brain Docosapentaenoic Acid (n-6 DPA, a brain DHA deficiency marker) relative to SHAMDHA and DHACCI pups (p < 0.001, diet effect). DHA diet nearly doubled DHA and decreased n-6 DPA in blood but did not increase brain DHA content (p < 0.0001, diet effect). We concluded that CCI or craniotomy alone induces a mild DHA deficit as shown by increased brain DPA.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/terapia , Ácidos Docosahexaenoicos/metabolismo , Ácidos Docosahexaenoicos/farmacología , Ácidos Grasos Insaturados/metabolismo , Fármacos Neuroprotectores/farmacología , Factores de Edad , Animales , Lesiones Traumáticas del Encéfalo/dietoterapia , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/administración & dosificación , Ácidos Grasos Insaturados/sangre , Infusiones Parenterales , Masculino , Fármacos Neuroprotectores/administración & dosificación , Ratas , Ratas Sprague-Dawley
8.
Exp Neurol ; 320: 112971, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31247195

RESUMEN

Traumatic brain injury (TBI) is the leading cause of acquired neurologic disability in children, yet specific therapies to treat TBI are lacking. Therapies that decrease the inflammatory response and enhance a reparative immune action may decrease oxidative damage and improve outcomes after TBI. Docosahexaenoic acid (DHA) modulates the immune response to injury in many organs. DHA given in the diet before injury decreased rat pup cognitive impairment, oxidative stress and white matter injury in our developmental TBI model using controlled cortical impact (CCI). Little is known about DHA effects on neuroinflammation in the developing brain. Further, it is not known if DHA given after developmental TBI exerts neuroprotective effects. We hypothesized that acute DHA treatment would decrease oxidative stress and improve cognitive outcome, associated with decreased pro-inflammatory activation of microglia, the brain's resident macrophages. METHODS: 17-day-old rat pups received intraperitoneal DHA or vehicle after CCI or SHAM surgery followed by DHA diet or continuation of REG diet to create DHACCI, REGCCI, SHAMDHA and SHAMREG groups. We measured brain nitrates/nitrites (NOx) at post injury day (PID) 1 to assess oxidative stress. We tested memory using Novel Object Recognition (NOR) at PID14. At PID 3 and 7, we measured reactivity of microglial activation markers Iba1, CD68 and CD206 and astrocyte marker GFAP in the injured cortex. At PID3, 7 and 30 we measured mRNA levels of inflammation-related genes and transcription factors in flow-sorted brain cells. RESULTS: DHA decreased oxidative stress at PID1 and pro-inflammatory microglial activation at PID3. CCI increased mRNA levels of two interferon regulatory family transcription factors, blunted by DHA, particularly in microglia-enriched cell populations at PID7. CCI increased mRNA levels of genes associated with "pro- " and "anti-" inflammatory activity at PID3, 7 and 30. Most notably within the microglia-enriched population, DHA blunted increased mRNA levels of pro-inflammatory genes at PID 3 and 7 and of anti-inflammatory genes at PID 30. Particularly in microglia, we observed parallel activation of pro-inflammatory and anti-inflammatory genes. DHA improved performance on NOR at PID14 after CCI. CONCLUSIONS: DHA decreased oxidative stress and histologic and mRNA markers of microglial pro-inflammatory activation in rat pup brain acutely after CCI associated with improved short term cognitive function. DHA administration after CCI has neuroprotective effects, which may result in part from modulation of microglial activation toward a less inflammatory profile in the first week after CCI. Future and ongoing studies will focus on phagocytic function and reactive oxygen species production in microglia and macrophages to test functional effects of DHA on neuroinflammation in our model. Given its favorable safety profile in children, DHA is a promising candidate therapy for pediatric TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/patología , Encéfalo/efectos de los fármacos , Ácidos Docosahexaenoicos/farmacología , Inflamación/patología , Fármacos Neuroprotectores/farmacología , Animales , Antioxidantes/farmacología , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
9.
Brain Dev ; 40(5): 367-375, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29429559

RESUMEN

In adult rats, erythropoietin improved outcomes early and late after traumatic brain injury, associated with increased levels of Brain Derived Neurotrophic Factor. Using our model of pediatric traumatic brain injury, controlled cortical impact in 17-day old rats, we previously showed that erythropoietin increased hippocampal neuronal fraction in the first two days after injury. Erythropoietin also decreased activation of caspase3, an apoptotic enzyme modulated by Brain Derived Neurotrophic Factor, and improved Novel Object Recognition testing 14 days after injury. Data on long-term effects of erythropoietin on Brain Derived Neurotrophic Factor expression, histology and cognitive function after developmental traumatic brain injury are lacking. We hypothesized that erythropoietin would increase Brain Derived Neurotrophic Factor and improve long-term object recognition in rat pups after controlled cortical impact, associated with increased neuronal fraction in the hippocampus. METHODS: Rats pups received erythropoietin or vehicle at 1, 24, and 48 h and 7 days after injury or sham surgery followed by histology at 35 days, Novel Object Recognition testing at adulthood, and Brain Derived Neurotrophic Factor measurements early and late after injury. RESULTS: Erythropoietin improved Novel Object Recognition performance and preserved hippocampal volume, but not neuronal fraction, late after injury. CONCLUSIONS: Improved object recognition in erythropoietin treated rats was associated with preserved hippocampal volume late after traumatic brain injury. Erythropoietin is approved to treat various pediatric conditions. Coupled with exciting experimental and clinical studies suggesting it is beneficial after neonatal hypoxic ischemic brain injury, our preliminary findings support further study of erythropoietin use after developmental traumatic brain injury.


Asunto(s)
Lesiones Traumáticas del Encéfalo/terapia , Cognición/efectos de los fármacos , Eritropoyetina/uso terapéutico , Animales , Animales Recién Nacidos , Lesiones Traumáticas del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Eritropoyetina/metabolismo , Eritropoyetina/farmacología , Hipocampo/metabolismo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Modelos Animales , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley
10.
J Neurotrauma ; 33(4): 390-402, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26247583

RESUMEN

Traumatic brain injury (TBI) is the leading cause of acquired neurologic disability in children. Specific therapies to treat acute TBI are lacking. Cognitive impairment from TBI may be blunted by decreasing inflammation and oxidative damage after injury. Docosahexaenoic acid (DHA) decreases cognitive impairment, oxidative stress, and white matter injury in adult rats after TBI. Effects of DHA on cognitive outcome, oxidative stress, and white matter injury in the developing rat after experimental TBI are unknown. We hypothesized that DHA would decrease early inflammatory markers and oxidative stress, and improve cognitive, imaging and histologic outcomes in rat pups after controlled cortical impact (CCI). CCI or sham surgery was delivered to 17 d old male rat pups exposed to DHA or standard diet for the duration of the experiments. DHA was introduced into the dam diet the day before CCI to allow timely DHA delivery to the pre-weanling pups. Inflammatory cytokines and nitrates/nitrites were measured in the injured brains at post-injury Day (PID) 1 and PID2. Morris water maze (MWM) testing was performed at PID41-PID47. T2-weighted and diffusion tensor imaging studies were obtained at PID12 and PID28. Tissue sparing was calculated histologically at PID3 and PID50. DHA did not adversely affect rat survival or weight gain. DHA acutely decreased oxidative stress and increased anti-inflammatory interleukin 10 in CCI brains. DHA improved MWM performance and lesion volume late after injury. At PID12, DHA decreased T2-imaging measures of cerebral edema and decreased radial diffusivity, an index of white matter injury. DHA improved short- and long-term neurologic outcomes after CCI in the rat pup. Given its favorable safety profile, DHA is a promising candidate therapy for pediatric TBI. Further studies are needed to explore neuroprotective mechanisms of DHA after developmental TBI.


Asunto(s)
Edema Encefálico/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Disfunción Cognitiva/tratamiento farmacológico , Imagen de Difusión Tensora , Ácidos Docosahexaenoicos/administración & dosificación , Sustancia Blanca/efectos de los fármacos , Animales , Edema Encefálico/patología , Lesiones Traumáticas del Encéfalo/patología , Disfunción Cognitiva/patología , Imagen de Difusión Tensora/métodos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratas , Ratas Sprague-Dawley , Sustancia Blanca/patología
11.
Brain Res ; 1574: 105-12, 2014 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-24929209

RESUMEN

After traumatic brain injury (TBI), proteolysis of Alpha II Spectrin by Calpain 1 produces 145 Spectrin breakdown products (SBDPs) while proteolysis by Caspase 3 produces 120 SBDPs. 145 and 120 SBDP immunoblotting reflects the relative importance of caspase-dependent apoptosis or calpain-dependent excitotoxic/necrotoxic cell death in brain regions over time. In the adult rat, controlled cortical impact (CCI) increased 120 SBDPs in the first hours, lasting a few days, and increased 145 SBDPs within the first few days lasting up to 14 days after injury. Little is known about SBDPs in the immature brain after TBI. Since development affects susceptibility to apoptosis after TBI, we hypothesized that CCI would increase 145 and 120 SBDPs in the immature rat brain relative to SHAM during the first 3 and 5 days, respectively. SBDPs were measured in hippocampi and cortices at post injury days (PID) 1, 2, 3, 5, 7 and 14 after CCI or SHAM surgery in the 17 day old Sprague Dawley rat. 145 SBDPs increased in both brain tissues ipsilateral to injury during the first 3 days, while changes in contralateral tissues were limited to PID2 cortex. 145 SBDPs elevations were more marked and enduring in hippocampus than in cortex. Against expectations, 120 SBDPs only increased in PID1 hippocampus and PID2 cortex. 145 SBDPs elevations occurred early after CCI, similar to previous studies in the adult rat, but resolved more quickly. The minimal changes in 120 SBDPs suggest that calpain-dependent, but not caspase-dependent, cell death predominates in the 17 day old rat after CCI.


Asunto(s)
Lesiones Encefálicas/fisiopatología , Corteza Cerebral/fisiopatología , Hipocampo/fisiopatología , Espectrina/metabolismo , Animales , Muerte Celular/fisiología , Corteza Cerebral/crecimiento & desarrollo , Modelos Animales de Enfermedad , Lateralidad Funcional , Hipocampo/crecimiento & desarrollo , Immunoblotting , Masculino , Distribución Aleatoria , Ratas Sprague-Dawley , Factores de Tiempo
12.
J Neurotrauma ; 31(4): 358-69, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23972011

RESUMEN

UNLABELLED: Traumatic brain injury (TBI) is a leading cause of acquired neurologic disability in children. Erythropoietin (EPO), an anti-apoptotic cytokine, improved cognitive outcome in adult rats after TBI. To our knowledge, EPO has not been studied in a developmental TBI model. HYPOTHESIS: We hypothesized that EPO would improve cognitive outcome and increase neuron fraction in the hippocampus in 17-day-old (P17) rat pups after controlled cortical impact (CCI). METHODS: EPO or vehicle was given at 1, 24, and 48 h after CCI and at post injury day (PID) 7. Cognitive outcome at PID14 was assessed using Novel Object Recognition (NOR). Hippocampal EPO levels, caspase activity, and mRNA levels of the apoptosis factors Bcl2, Bax, Bcl-xL, and Bad were measured during the first 14 days after injury. Neuron fraction and caspase activation in CA1, CA3, and DG were studied at PID2. RESULTS: EPO normalized recognition memory after CCI. EPO blunted the increased hippocampal caspase activity induced by CCI at PID1, but not at PID2. EPO increased neuron fraction in CA3 at PID2. Brain levels of exogenous EPO appeared low relative to endogenous. Timing of EPO administration was associated with temporal changes in hippocampal mRNA levels of EPO and pro-apoptotic factors. Conclusion/Speculation: EPO improved recognition memory, increased regional hippocampal neuron fraction, and decreased caspase activity in P17 rats after CCI. We speculate that EPO improved cognitive outcome in rat pups after CCI as a result of improved neuronal survival via inhibition of caspase-dependent apoptosis early after injury.


Asunto(s)
Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/enzimología , Caspasas/metabolismo , Cognición/efectos de los fármacos , Eritropoyetina/uso terapéutico , Hipocampo/enzimología , Animales , Western Blotting , Química Encefálica , Relación Dosis-Respuesta a Droga , Ensayo de Inmunoadsorción Enzimática , Epoetina alfa , Eritropoyetina/administración & dosificación , Conducta Exploratoria/efectos de los fármacos , Hematócrito , Hipocampo/efectos de los fármacos , Masculino , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Reconocimiento en Psicología/efectos de los fármacos , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/uso terapéutico
13.
Metab Brain Dis ; 27(2): 167-73, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22527999

RESUMEN

Pediatric traumatic brain injury (TBI) is a major cause of acquired cognitive dysfunction in children. Hippocampal Brain Derived Neurotrophic Factor (BDNF) is important for normal cognition. Little is known about the effects of TBI on BDNF levels in the developing hippocampus. We used controlled cortical impact (CCI) in the 17 day old rat pup to test the hypothesis that CCI would first increase rat hippocampal BDNF mRNA/protein levels relative to SHAM and Naïve rats by post injury day (PID) 2 and then decrease BDNF mRNA/protein by PID14. Relative to SHAM, CCI did not change BDNF mRNA/protein levels in the injured hippocampus in the first 2 days after injury but did decrease BDNF protein at PID14. Surprisingly, BDNF mRNA decreased at PID 1, 3, 7 and 14, and BDNF protein decreased at PID 2, in SHAM and CCI hippocampi relative to Naïve. In conclusion, TBI decreased BDNF protein in the injured rat pup hippocampus 14 days after injury. BDNF mRNA levels decreased in both CCI and SHAM hippocampi relative to Naïve, suggesting that certain aspects of the experimental paradigm (such as craniotomy, anesthesia, and/or maternal separation) may decrease the expression of BDNF in the developing hippocampus. While BDNF is important for normal cognition, no inferences can be made regarding the cognitive impact of any of these factors. Such findings, however, suggest that meticulous attention to the experimental paradigm, and possible inclusion of a Naïve group, is warranted in studies of BDNF expression in the developing brain after TBI.


Asunto(s)
Lesiones Encefálicas/metabolismo , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Encéfalo/crecimiento & desarrollo , Animales , Lesiones Encefálicas/genética , Factor Neurotrófico Derivado del Encéfalo/genética , Hipocampo/lesiones , Hipocampo/metabolismo , Masculino , Proteínas del Tejido Nervioso/biosíntesis , ARN/biosíntesis , ARN/aislamiento & purificación , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Técnicas Estereotáxicas
14.
J Neurotrauma ; 29(11): 2075-85, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22413999

RESUMEN

Traumatic brain injury (TBI) is a major cause of acquired cognitive disability in childhood. Such disability may be blunted by enhancing the brain's endogenous neuroprotective response. An important endogenous neuroprotective response is the insulin-like growth factor-1 (IGF-1) mRNA variant, IGF-1B. IGF-1B mRNA, characterized by exon 5 inclusion, encodes the IGF-1 and Eb peptides. IGF-1A mRNA excludes exon 5 and encodes the IGF-1 and Ea peptides. A region in the human IGF-1B homologue acts as an exon-splicing enhancer (ESE) to increase IGF-1B mRNA. It is not known if TBI is associated with increased brain IGF-1B mRNA. Epigenetic modifications may underlie altered gene expression in the brain after TBI. We hypothesized that TBI would increase hippocampal IGF-1B mRNA in 17-day-old rats, associated with DNA methylation and/or histone modifications at the promoter site 1 (P1) or exon 5/ESE region. Hippocampi from rat pups after controlled cortical impact (CCI) were used to measure IGF-1B mRNA, DNA methylation, and histone modifications at the P1, P2, and exon5/ESE regions. In CCI hippocampi, IGF-1B mRNA peaked at post-injury day (PID) 2 (1700±320% sham), but normalized by PID 14. IGF-1A peaked at PID 3 (280±52% sham), and remained elevated at PID 14. Increased IGF-1B mRNA was associated with increased methylation at P1, and increased histone modifications associated with gene activation at P2 and exon5/ESE, together with differential methylation in the exon 5/ESE regions. We report for the first time that hippocampal IGF-1B mRNA increased after developmental TBI. We speculate that epigenetic modifications at the P2 and exon 5/ESE regions are important in the regulation of IGF-1B mRNA expression. The exon 5/ESE region may present a means for future therapies to target IGF-1B transcription after TBI.


Asunto(s)
Lesiones Encefálicas/genética , Epigénesis Genética/genética , Hipocampo/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Regiones Promotoras Genéticas , Animales , Lesiones Encefálicas/metabolismo , Inmunoprecipitación de Cromatina , Modelos Animales de Enfermedad , Exones/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , ARN Mensajero/análisis , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
J Neurochem ; 110(2): 581-94, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19457116

RESUMEN

Synaptic transmission depends on the efficient loading of transmitters into synaptic vesicles by vesicular neurotransmitter transporters. The vesicular monoamine transporter-2 (VMAT2) is essential for loading monoamines into vesicles and maintaining normal neurotransmission. In an effort to understand the regulatory mechanisms associated with VMAT2, we have embarked upon a systematic search for interacting proteins. Glutathione-S-transferase pull-down assays combined with mass spectrometry led to the identification of the 70-kDa heat shock cognate protein (Hsc70) as a VMAT2 interacting protein. Co-immunoprecipitation experiments in brain tissue and heterologous cells confirmed this interaction. A direct binding was observed between the amino terminus and the third cytoplasmic loop of VMAT2, as well as, a region containing the substrate binding and the carboxy-terminal domains of Hsc70. Furthermore, VMAT2 and Hsc70 co-fractionated with purified synaptic vesicles obtained from a sucrose gradient, suggesting that this interaction occurs at the synaptic vesicle membrane. The functional significance of this novel VMAT2/Hsc70 interaction was examined by performing vesicular uptake assays in heterologous cells and purified synaptic vesicles from brain tissue. Recombinant Hsc70 produced a dose-dependent inhibition of VMAT2 activity. This effect was mimicked by the closely related Hsp70 protein. In contrast, VMAT2 activity was not altered in the presence of previously denatured Hsc70 or Hsp70, as well as the unrelated Hsp60 protein; confirming the specificity of the Hsc70 effect. Finally, a purified Hsc70 fragment that binds VMAT2 was sufficient to inhibit VMAT2 activity in synaptic vesicles. Our results suggest an important role for Hsc70 in VMAT2 function and regulation.


Asunto(s)
Proteínas del Choque Térmico HSC70/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Secuencia de Aminoácidos , Animales , Células CHO , Cricetinae , Cricetulus , Proteínas del Choque Térmico HSC70/fisiología , Humanos , Masculino , Chaperonas Moleculares/fisiología , Datos de Secuencia Molecular , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/fisiología , Ratas , Ratas Sprague-Dawley , Proteínas de Transporte Vesicular de Monoaminas/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...