Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mater Adv ; 5(15): 6285-6294, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39081471

RESUMEN

Side-chain engineering in molecular semiconductors provides a versatile toolbox for precisely manipulating the material's processability, crystallographic properties, as well as electronic and optoelectronic characteristics. This study explores the impact of integrating hydrophilic side chains, specifically oligoethylene glycol (OEG) units, into the molecular structure of the small molecule semiconductor, 2,7-bis(2(2-methoxy ethoxy)ethoxy) benzo[b]benzo[4,5] thieno[2,3-d] thiophene (OEG-BTBT). The investigation includes a comprehensive analysis of thin film morphology and crystallographic properties, along with the optimization of deposition parameters for improving the device performance. Despite the anticipated benefits, such as enhanced processability, our investigation into OEG-BTBT-based organic field-effect transistors (OFETs) reveals suboptimal performance marked by a low effective charge carrier mobility, a low on/off ratio, and a high threshold voltage. The study unveils bias stress effects and device degradation attributed to the high ionization energy of OEG-BTBT alongside the hydrophilic nature of the ethylene-glycol moieties, which lead to charge trapping at the dielectric interface. Our findings underscore the need for a meticulous balance between electronic properties and chemical functionalities in molecular semiconductors to achieve stable and efficient performance in organic electronic devices.

2.
ACS Appl Mater Interfaces ; 16(25): 32874-32885, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38863159

RESUMEN

Polymer coating to substrates alters surface chemistry and imparts bulk material functionalities with a minute thickness, even in nanoscale. Specific surface modification of a substate usually requires an active substrate that, e.g., undergoes a chemical reaction with the modifying species. Here, we present a generic method for surface modification, namely, solid-state adsorption, occurring purely by entropic strive. Formed by heating above the melting point or glass transition and subsequent rinsing of the excess polymer, the emerging ultrathin (<10 nm) layers are known in fundamental polymer physics but have never been utilized as building blocks for materials and they have never been explored on soft matter substrates. We show with model surfaces as well as bulk substrates, how solid-state adsorption of common polymers, such as polystyrene and poly(lactic acid), can be applied on soft, cellulose-based substrates. Our study showcases the versatility of solid-state adsorption across various polymer/substrate systems. Specifically, we achieve proof-of-concept hydrophobization on flexible cellulosic substrates, maintaining irreversible and miniscule adsorption yet with nearly 100% coverage without compromising the bulk material properties. The method can be considered generic for all polymers whose Tg and Tm are below those of the to-be-coated adsorbed layer, and whose integrity can withstand the solvent leaching conditions. Its full potential has broad implications for diverse materials systems where surface coatings play an important role, such as packaging, foldable electronics, or membrane technology.

3.
ACS Appl Mater Interfaces ; 16(9): 11901-11913, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38400877

RESUMEN

Materials against ice formation and accretion are highly desirable for different industrial applications and daily activities affected by icing. Although several concepts have been proposed, no material has so far shown wide-ranging icephobic features, enabling durability and manufacturing on large scales. Herein, we present gradient polymers made of 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane (V4D4) and 1H,1H,2H,2H-perfluorodecyl acrylate (PFDA) deposited in one step via initiated chemical vapor deposition (iCVD) as an effective coating to mitigate ice accretion and reduce ice adhesion. The gradient structures easily overcome adhesion, stability, and durability issues of traditional fluorinated coatings. The coatings show promising icephobic performance by reducing ice adhesion, depressing the freezing point, delaying drop freezing, and inhibiting ice nucleation and frost propagation. Icephobicity correlates with surface energy discontinuities at the surface plane resulting from the random orientation of the fluorinated groups of PFDA, as confirmed by grazing-incidence X-ray diffraction measurements. The icephobicity could be further improved by tuning the surface crystallinity rather than surface wetting, as samples with random crystal orientation show the lowest ice adhesion despite high contact angle hysteresis. The iCVD-manufactured coatings show promising results, indicating the potential for ice control on larger scales and various applications.

4.
CrystEngComm ; 26(8): 1071-1076, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38384732

RESUMEN

Precise control over the crystalline phase and crystallographic orientation within thin films of metal-organic frameworks (MOFs) is highly desirable. Here, we report a comparison of the liquid- and vapour-phase film deposition of two copper-dicarboxylate MOFs starting from an oriented metal hydroxide precursor. X-ray diffraction revealed that the vapour- or liquid-phase reaction of the linker with this precursor results in different crystalline phases, morphologies, and orientations. Pole figure analysis showed that solution-based growth of the MOFs follows the axial texture of the metal hydroxide precursor, resulting in heteroepitaxy. In contrast, the vapour-phase method results in non-epitaxial growth with uniplanar texture only.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA