Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pathogens ; 13(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38921753

RESUMEN

Visceral leishmaniasis is a disease caused by protozoa of the species Leishmania (Leishmania) infantum (syn = Leishmania chagasi) and Leishmania (Leishmania) donovani, which are transmitted by hematophagous insects of the genera Lutzomyia and Phlebotomus. The domestic dog (Canis familiaris) is considered the main urban reservoir of the parasite due to the high parasite load on its skin, serving as a source of infection for sandfly vectors and, consequently, perpetuating the disease in the urban environment. Some factors are considered important in the perpetuation and spread of canine visceral leishmaniasis (CVL) in urban areas, such as stray dogs, with their errant behavior, and houses that have backyards with trees, shade, and organic materials, creating an attractive environment for sandfly vectors. CVL is found in approximately 50 countries, with the number of infected dogs reaching millions. However, due to the difficulty of controlling and diagnosing the disease, the number of infected animals could be even greater. In the four continents endemic for CVL, there are reports of disease expansion in endemic countries such as Brazil, Italy, Morocco, and Tunisia, as well as in areas where CVL is not endemic, for example, Uruguay. Socio-environmental factors, such as migration, drought, deforestation, and global warming, have been pointed out as reasons for the expansion into areas where it had been absent. Thus, the objective of this review is to address (i) the distribution of CVL in endemic areas, (ii) the role of the dog in the visceral leishmaniasis epidemiology and the factors that influence dog infection and the spread of the disease, and (iii) the challenges faced in the control of CVL.

2.
Vaccines (Basel) ; 12(3)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38543905

RESUMEN

The development of prophylactic vaccines is important in preventing and controlling diseases such as visceral leishmaniasis (VL), in addition to being an economic measure for public health. Despite the efforts to develop a vaccine against human VL caused by Leishmania infantum, none is available, and the focus has shifted to developing vaccines against canine visceral leishmaniasis (CVL). Currently, commercially available vaccines are targeted at CVL but are not effective. Different strategies have been applied in developing and improving vaccines, such as using chimeric proteins to expand vaccine coverage. The search for patents can be a way of tracking vaccines that have the potential to be marketed. In this context, the present work presents a summary of immunological aspects relevant to VL vaccine development with a focus on the composition of chimeric protein vaccines for CVL deposited in patent banks as an important approach for biotechnological development. The resulting data could facilitate the screening and selection of antigens to compose vaccine candidates with high performance against VL.

3.
Vaccines (Basel) ; 11(10)2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37896969

RESUMEN

Dogs with visceral leishmaniasis play a key role in the transmission cycle of Leishmania infantum to humans in the urban environment. There is a consensus regarding the importance of developing a vaccine to control this disease. Despite many efforts to develop a protective vaccine against CVL, the ones currently available, Leish-tec® and LetiFend®, have limited effectiveness. This is due, in part, to the complexity of the immune response of the naturally infected dogs against the parasite and the complexity of the parasite transmission cycle. Thus, strategies, such as the development of a transmission-blocking vaccines (TBVs) already being applied to other vector-borne diseases like malaria and dengue, would be an attractive alternative to control leishmaniasis. TBVs induce the production of antibodies in the vertebrate host, which can inhibit parasite development in the vector and/or interfere with aspects of vector biology, leading to an interruption of parasite transmission. To date, there are few TBV studies for CVL and other leishmaniasis forms. However, the few studies that exist show promising results, thus justifying the further development of this approach.

4.
Vaccines (Basel) ; 11(1)2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36679956

RESUMEN

Visceral leishmaniasis (VL) is a fatal disease caused by the protozoa Leishmania infantum for which dogs are the main reservoirs. A vaccine against canine visceral leishmaniasis (CVL) could be an important tool in the control of human and CVL by reducing the infection pressure of L. infantum. Despite the CVL vaccine available on the market, the Brazilian Ministry of Health did not implement the use of it in their control programs. In this sense, there is an urgent need to develop more efficient vaccines. In this study, the association between two polymeric nanoformulations, (poly (D, L-lactic) acid (PLA) polymer) loading Leishmania amazonensis antigens, was evaluated as a potential immunobiological agent against VL using golden hamsters as an experimental model. The results indicated that no significant adverse reactions were observed in animals vaccinated with LAPSmP. LAPSmP presented similar levels of total anti-Leishmania IgG as compared to LAPSmG. The LAPSmP and LAPSmG groups showed an intense reduction in liver and spleen parasitic load by qPCR. The LAPSmP and LAPSmG vaccines showed exceptional results, indicating that they may be promising candidates as a VL vaccine.

6.
Front Bioeng Biotechnol ; 8: 538203, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33344427

RESUMEN

The sponge implant has been applied as an important in vivo model for the study of inflammatory processes as it induces the migration, proliferation, and accumulation of inflammatory cells, angiogenesis, and extracellular matrix deposition in its trabeculae. The characterization of immune events in sponge implants would be useful in identifying the immunological events that could support the selection of an appropriate experimental model (mouse strain) and time post-implant analysis in optimized protocols for novel applications of this model such as in biomolecules screening. Here, the changes in histological/morphometric, immunophenotypic and functional features of infiltrating leukocytes (LEU) were assessed in sponge implants for Swiss, BALB/c, and C57BL/6 mice. A gradual increase of fibrovascular stroma and a progressive decrease in LEU infiltration, mainly composed of polymorphonuclear cells with progressive shift toward mononuclear cells at late time-points were observed over time. Usually, Swiss mice presented a more prominent immune response with late mixed pattern (pro-inflammatory/anti-inflammatory: IL-2/IFN-γ/IL-4/IL-10/IL-17) of cytokine production. While BALB/c mice showed an early activation of the innate response with a controlled cytokine profile (low inflammatory potential), C57BL/6 mice presented a typical early pro-inflammatory (IL-6/TNF/IFN-γ) response with persistent neutrophilic involvement. A rational selection of the ideal time-point/mouse-lineage would avoid bias or tendentious results. Criteria such as low number of increased biomarkers, no recruitment of cytotoxic response, minor cytokine production, and lower biomarker connectivity (described as biomarker signature analysis and network analysis) guided the choice of the best time-point for each model (Day5/Swiss; Day7/BALB/c; Day6/C57BL/6) with wide application for screening purposes, such as identification of therapeutic biomolecules, selection of antigens/adjuvants, and follow-up of innate and adaptive immune response to vaccines candidates.

7.
Front Med (Lausanne) ; 7: 496, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32984376

RESUMEN

Visceral leishmaniasis (VL) is a severe disease caused by Leishmania infantum. Dogs are the parasite's main reservoir, favoring its transmission in the urban environment. The analysis of L. infantum from infected dogs contributes to the identification of more virulent parasites, thereby supporting basic and applied studies such as vaccinal and therapeutic strategies. We proposed the in vitro and in vivo characterization of L. infantum strains from naturally infected dogs from a VL endemic area based on an infectivity and pathogenicity analysis. DH82 canine macrophages were infected in vitro with different strains for infectivity analysis, showing distinct infectivity profiles. The strains that showed greater and lesser infectivity using in vitro analyses (616 and 614, respectively) were used to infect hamsters for pathogenicity analysis. The group infected with strain 616 showed 100% survival while the group infected with strain 614 showed 50% after seven months of follow up. Furthermore, the 614 strain induced more noticeable clinicopathological changes and biochemical abnormalities in liver function, along with high inflammation and parasite load in the liver and spleen. We confirmed high variability of infectivity and pathogenicity in L. infantum strains from infected dogs. The results support the belief that screening for L. infantum infectivity using in vitro experiments is inadequate when it comes to selecting the most pathogenic strain.

8.
Front Med (Lausanne) ; 7: 275, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32656216

RESUMEN

Continuous climate changes associated with the disorderly occupation of urban areas have exposed Latin American populations to the emergence and reemergence of arboviruses transmitted by Aedes aegypti. The magnitude of the financial and political problems these epidemics may bring to the future of developing countries is still ignored. Due to the lack of effective antiviral drugs and vaccines against arboviruses, the primary measure for preventing or reducing the transmission of diseases depends entirely on the control of vectors or the interruption of human-vector contact. In Brazil the first attempt to control A. aegypti took place in 1902 by eliminating artificial sites of eproduction. Other strategies, such as the use of oviposition traps and chemical control with dichlorodiphenyltrichlorethane and pyrethroids, were successful, but only for a limited time. More recently, biotechnical approaches, such as the release of transgenics or sterile mosquitoes and the, development of transmission blocking vaccines, are being applied to try to control the A. aegypti population and/or arbovirus transmission. Endemic countries spend about twice as much to treat patients as they do on the prevention of mosquito-transmitted diseases. The result of this strategy is an explosive outbreak of arboviruses cases. This review summarizes the social impacts caused by A. aegypti-transmitted diseases, mainly from a biotechnological perspective in vector control aimed at protecting Latin American populations against arboviruses.

9.
Vet Parasitol ; 271: 87-97, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31303211

RESUMEN

The natural history of canine visceral leishmaniasis (CVL) has been well described, particularly with respect to the parasite load in different tissues and immunopathological changes according to the progression of clinical forms. The biomarkers evaluated in these studies provide support for the improvement of the tools used in developing vaccines against CVL. Thus, we describe the major studies using the dog model that supplies the rationale for including different biomarkers (tissue parasitism, histopathology, hematological changes, leucocytes immunophenotyping, cytokines patterns, and in vitroco-culture systems using purified T-cells subsets and macrophages infected with L. infantum) for immunogenicity and protection evaluations in phases I and II applied to pre-clinical and clinical vaccine trials against CVL. The search for biomarkers related to resistance or susceptibility has revealed a mixed cytokine profile with a prominent proinflammatory immune response as relevant for Leishmania replication at low levels as observed in asymptomatic dogs (highlighted by high levels of IFN-γ and TNF-α and decreased levels in IL-4, TGF-ß and IL-10). Furthermore, increased levels in CD4+ and CD8+ T-cell subsets, presenting intracytoplasmic proinflammatory cytokine balance, have been associated with a resistance profile against CVL. In contrast, a polyclonal B-cell expansion towards plasma cell differentiation contributes to high antibody production, which is the hallmark of symptomatic dogs associated with high susceptibility in CVL. Finally, the different studies used to analyze biomarkers have been incorporated into vaccine immunogenicity and protection evaluations. Those biomarkers identified as resistance or susceptibility markers in CVL have been used to evaluate the vaccine performance against L. infantum in a kennel trial conducted before the field trial in an area known to be endemic for visceral leishmaniasis. This rationale has been a guiding force in the testing and selection of the best vaccine candidates against CVL and provides a way for the veterinary industry to register commercial immunobiological products.


Asunto(s)
Biomarcadores/sangre , Enfermedades de los Perros/sangre , Leishmaniasis Visceral/veterinaria , Animales , Biomarcadores/análisis , Susceptibilidad a Enfermedades/metabolismo , Enfermedades de los Perros/inmunología , Enfermedades de los Perros/parasitología , Perros , Leishmaniasis Visceral/sangre , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/parasitología , Vacunas Antiprotozoos/inmunología
10.
Artículo en Inglés | MEDLINE | ID: mdl-31921703

RESUMEN

Visceral leishmaniasis (VL), caused by digenetic protozoa of the genus Leishmania, is the most severe form of leishmaniasis. Leishmania infantum is one of the species responsible for VL and the disease caused is considered a zoonosis whose main reservoir is the dog. Canine visceral leishmaniasis (CVL) can lead to the death of the animal if left untreated. Furthermore, the available pharmocologial treatment for CVL presents numerous disadvantages, such as relapses, toxicity, drug resistance, and the fact treated animals continue to be reservoirs when treatment fails to achieve parasitological cure. Moreover, the available VL control methods have not been adequate when it comes to controlling parasite transmission. Advances in immune response knowledge in recent years have led to a better understanding of VL pathogenesis, allowing new treatments to be developed based on immune system activation, often referred to as immunotherapy. In fact, well-defined protocols have been described, ranging from the use of immunomodulators to the use of vaccines. This treatment, which can also be associated with chemotherapy, has been shown to be effective in restoring or inducing an adequate immune response to reduce parasitic burden, leading to clinical improvement. This review focuses on immunotherapy directed at dogs infected by L. infantum, including a literature review of what has already been done in dogs. We also introduce a promising strategy to improve the efficacy of immunotherapy.


Asunto(s)
Antígenos de Protozoos/uso terapéutico , Enfermedades de los Perros/terapia , Inmunoterapia/métodos , Leishmaniasis Visceral/terapia , Leishmaniasis Visceral/veterinaria , Animales , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/administración & dosificación , Antígenos de Protozoos/inmunología , Biomarcadores , Enfermedades de los Perros/inmunología , Enfermedades de los Perros/parasitología , Perros , Humanos , Factores Inmunológicos/uso terapéutico , Leishmania infantum/inmunología , Leishmaniasis Visceral/inmunología , Vacunas Antiprotozoos/uso terapéutico , Resultado del Tratamiento
11.
Parasit Vectors ; 9: 472, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27577735

RESUMEN

BACKGROUND: In past years, many researchers have sought canine visceral leishmaniasis (CVL) prevention through the characterization of Leishmania antigens as vaccine candidates. Despite these efforts, there is still no efficient vaccine for CVL control. METHODS: In the present study, we performed a pre-clinical vaccine trial using BALB/c mice to compare the effects of the multicomponent LBSap vaccine with those of Leish-Tec® and Leishmune®. Blood was collected to determine the frequency of peripheral blood cells and to evaluate hematologic and immunophenotypic parameters. Liver and spleen samples were collected for parasitological quantification, and spleen samples were used to access the cytokine profile. RESULTS: When measuring total IgG and IgG1 anti-Leishmania levels after the third vaccination and L. infantum challenge, it was evident that all vaccines were able to induce humoral immune response. Regarding the innate immune response, increased levels of NK CD3(-)CD49(+) cells were the hallmark of all vaccinated groups, whereas only the Leish-Tec® group displayed a high frequency of CD14(+) monocytes after L. infantum challenge. Moreover, CD3(+)CD4(+) T cells were the main circulating lymphocytes induced after L. infantum challenge with all evaluated vaccines. Importantly, after L. infantum challenge, splenocytes from the Leishmune® vaccine produced high levels of IL-2, whereas a prominent type 1 immune response was the hallmark of the LBSap vaccine, which presented high levels of IL-2, IL-6, TNF-α, and IFN-γ. The efficacy analysis using real-time polymerase chain reaction demonstrated a reduction in the parasitism in the spleen (Leishmune®: 64 %; LBSap: 42 %; and Leish-Tec®: 36 %) and liver (Leishmune®: 71 %; LBSap: 62 %; and Leish-Tec®: 48 %). CONCLUSIONS: The dataset led to the conclusion that the LBSap vaccination was able to induce immune and efficacy profiles comparable with those of commercial vaccines, thus demonstrating its potential as a promising vaccine candidate for visceral leishmaniasis control.


Asunto(s)
Antígenos de Protozoos/inmunología , Leishmania/inmunología , Leishmaniasis Visceral/prevención & control , Vacunas Antiprotozoos/inmunología , Animales , Citocinas/genética , Citocinas/metabolismo , Femenino , Regulación de la Expresión Génica/inmunología , Inmunidad Innata , Inmunoglobulina G/sangre , Leishmania/metabolismo , Hígado/parasitología , Linfocitos/clasificación , Linfocitos/fisiología , Ratones , Ratones Endogámicos BALB C , Bazo/parasitología
12.
PLoS One ; 11(8): e0161169, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27556586

RESUMEN

Dogs represent the most important domestic reservoir of L. chagasi (syn. L. infantum). A vaccine against canine visceral leishmaniasis (CVL) would be an important tool for decreasing the anxiety related to possible L. chagasi infection and for controlling human visceral leishmaniasis (VL). Because the sand fly salivary proteins are potent immunogens obligatorily co-deposited during transmission of Leishmania parasites, their inclusion in an anti-Leishmania vaccine has been investigated in past decades. We investigated the immunogenicity of the "LbSapSal" vaccine (L. braziliensis antigens, saponin as adjuvant, and Lutzomyia longipalpis salivary gland extract) in dogs at baseline (T0), during the post-vaccination protocol (T3rd) and after early (T90) and late (T885) times following L. chagasi-challenge. Our major data indicated that immunization with "LbSapSal" is able to induce biomarkers characterized by enhanced amounts of type I (tumor necrosis factor [TNF]-α, interleukin [IL]-12, interferon [IFN]-γ) cytokines and reduction in type II cytokines (IL-4 and TGF-ß), even after experimental challenge. The establishment of a prominent pro-inflammatory immune response after "LbSapSal" immunization supported the increased levels of nitric oxide production, favoring a reduction in spleen parasitism (78.9%) and indicating long-lasting protection against L. chagasi infection. In conclusion, these results confirmed the hypothesis that the "LbSapSal" vaccination is a potential tool to control the Leishmania chagasi infection.


Asunto(s)
Enfermedades de los Perros/inmunología , Enfermedades de los Perros/parasitología , Leishmania infantum/inmunología , Vacunas contra la Leishmaniasis/inmunología , Leishmaniasis Visceral/veterinaria , Animales , Biomarcadores , Brasil , Citocinas/metabolismo , Enfermedades de los Perros/metabolismo , Enfermedades de los Perros/prevención & control , Perros , Femenino , Mediadores de Inflamación/metabolismo , Vacunas contra la Leishmaniasis/administración & dosificación , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Masculino , Modelos Biológicos , Óxido Nítrico/biosíntesis , Carga de Parásitos , Bazo/inmunología , Bazo/parasitología , Vacunación
13.
Vet Parasitol ; 211(3-4): 124-32, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26095951

RESUMEN

New methods for evaluating the canine immune system are necessary, not only to monitor immunological disorders, but also to provide insights for vaccine evaluations and therapeutic interventions, reducing the costs of assays using dog models, and provide a more rational way for analyzing the canine immune response. The present study intended to establish an in vitro toll to assess the parasitological/immunological status of dogs, applicable in pre-clinical trials of vaccinology, prognosis follow-up and therapeutics analysis of canine visceral leishmaniasis. We have evaluated the performance of co-culture systems of canine Leishmania chagasi-infected macrophages with different cell ratios of total lymphocytes or purified CD4(+) and CD8(+) T-cells. Peripheral blood mononuclear cells from uninfected dogs were used for the system set up. Employing the co-culture systems of L. chagasi-infected macrophages and purified CD4(+) or CD8(+) T-cell subsets we observed a microenvironment compatible with the expected status of the analyzed dogs. In this context, it was clearly demonstrated that, at this selected T-cell:target ratio, the adaptive immune response of uninfected dogs, composed by L. chagasi-unprimed T-cells was not able to perform the in vitro killing of L. chagasi-infected macrophages. Our data demonstrated that the co-culture system with T-cells from uninfected dogs at 1:5 and 1:2 ratio did not control the infection, yielding to patent in vitro parasitism (≥ 80%), low NO production (≤ 5 µM) and IL-10 modulated (IFN-γ/IL-10 ≤ 2) immunological profile in vitro. CD4(+) or CD8(+) T-cells at 1:5 or 1:2 ratio to L. chagasi-infected macrophages seems to be ideal for in vitro assays. This co-culture system may have great potential as a canine immunological analysis method, as well as in vaccine evaluations, prognosis follow-up and therapeutic interventions.


Asunto(s)
Linfocitos T CD4-Positivos/fisiología , Linfocitos T CD8-positivos/fisiología , Leishmania/fisiología , Macrófagos/parasitología , Animales , Linfocitos T CD4-Positivos/parasitología , Linfocitos T CD8-positivos/parasitología , Células Cultivadas , Técnicas de Cocultivo/veterinaria , Perros , Femenino , Masculino
14.
Vet Parasitol ; 198(3-4): 371-81, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24129068

RESUMEN

In the studies presented here, dogs were vaccinated against Leishmania (Leishmania) chagasi challenge infection using a preparation of Leishmania braziliensis promastigote proteins and saponin as adjuvant (LBSap). Vaccination with LBSap induced a prominent type 1 immune response that was characterized by increased levels of interleukin (IL-) 12 and interferon gamma (IFN-γ) production by peripheral blood mononuclear cells (PBMC) upon stimulation with soluble vaccine antigen. Importantly, results showed that this type of responsiveness was sustained after challenge infection; at day 90 and 885 after L. chagasi challenge infection, PBMCs from LBSap vaccinated dogs produced more IL-12, IFN-γ and concomitant nitric oxide (NO) when stimulated with Leishmania antigens as compared to PBMCs from respective control groups (saponin, LB- treated, or non-treated control dogs). Moreover, transforming growth factor (TGF)-ß decreased in the supernatant of SLcA-stimulated PBMCs in the LBSap group at 90 days. Bone marrow parasitological analysis revealed decreased frequency of parasitism in the presence of vaccine antigen. It is concluded that vaccination of dogs with LBSap vaccine induced a long-lasting type 1 immune response against L. chagasi challenge infection.


Asunto(s)
Citocinas/metabolismo , Vacunas contra la Leishmaniasis/inmunología , Leishmaniasis/veterinaria , Óxido Nítrico/metabolismo , Vacunación/veterinaria , Animales , Antígenos de Protozoos/inmunología , Médula Ósea/parasitología , Enfermedades de los Perros/inmunología , Perros , Femenino , Leishmania/inmunología , Leishmaniasis/inmunología , Vacunas contra la Leishmaniasis/normas , Leucocitos Mononucleares/inmunología , Masculino , Saliva/inmunología
15.
Vet Parasitol ; 198(1-2): 62-71, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24018185

RESUMEN

Canine visceral leishmaniasis (CVL) is a parasitic disease endemic in many countries, and dogs present as the major natural reservoir of the parasite, Leishmania chagasi (syn. L. infantum). Biomarkers in the canine immune system is an important technique in the course of developing vaccines and treatment strategies against CVL. New methodologies for studying the immune response of dogs during Leishmania infection and after receiving vaccines and treatments against CVL would be useful. In this context, we used peripheral blood mononuclear cells (PBMCs) from healthy dogs to evaluate procedures related to (i) establishment of in vitro conditions of monocytes differentiated into macrophages infected with L. chagasi and (ii) purification procedures of T-cell subsets (CD4(+) and CD8(+)) using microbeads. Our data demonstrated that after 5 days of differentiation, macrophages were able to induce significant phagocytic and microbicidal activity after L. chagasi infection and also showed increased frequency of parasitism and a higher parasite load. Although N-acetyl-ß-d-glucosaminidase (NAG) levels presented similar levels of macrophage culture and L. chagasi infection, a progressive decrease in myeloperoxidase (MPO) levels was a hallmark over 5 days of culture. High purity levels (>90%) of CD4 and CD8 T cells were obtained on a magnetic separation column. We concluded that monocytes differentiated into macrophages at 5 days and displayed an intermediate frequency of parasitism and parasite load 72 h after L. chagasi infection. Furthermore, the purification system using canine T-lymphocyte subsets obtained after 5 days of monocyte differentiation proved efficient for CD4 or CD8 T-cell purification (≥90%). The in vitro analysis using L. chagasi-infected macrophages and purified T cells presented a prospective methodology that could be incorporated in CVL vaccine and treatment studies that aim to analyze the microbicidal potential induced by specific CD4(+) and/or CD8(+) T cells.


Asunto(s)
Linfocitos T CD4-Positivos/fisiología , Linfocitos T CD8-positivos/fisiología , Perros/sangre , Leishmania/clasificación , Macrófagos/fisiología , Monocitos/fisiología , Animales , Técnicas de Cultivo de Célula , Células Cultivadas , Femenino , Macrófagos/citología , Masculino , Monocitos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA