Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Physiol Biochem ; 52(5): 1166-1177, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30990586

RESUMEN

BACKGROUND/AIMS: Tributyltin (TBT) is an organotin (OTs) and biohazard organometallic pollutant. Recently our group has shown that TBT, even in very low doses, has deleterious effects on several tissues most likely due to its role as an endocrine-disrupting molecule. Other studies have confirmed that OT exposure could be responsible for neural, endocrine, and reproductive dysfunctions via in vitro and in vivo models. However, TBT effects on bone lack concise data despite the fact that bone turnover is regulated by endocrine molecules, such as parathormone (PTH), estrogen (E2), etc. Our group has already shown that TBT disrupts adrenal and female gonadal functions. METHODS: We studied the effects of TBT on bone metabolism and structure using DXA, microCT scan, and SEM. We also determined the calcium (Ca²âº) and phosphate (Pi) metabolism in TBT-treated rats as well as some biomarkers for bone formation and resorption. RESULTS: Surprisingly, we found that TBT leads to higher bone mineral density (BMD) although lesions in spinal bone were observed by either microCT scan or SEM. Biomarkers for bone resorption, such as the urinary deoxipyridinolines (DPD) excretion ratio was increased in TBT-treated animals versus mock-treated controls. Osteocalcin (OC) and alkaline phosphatase (AP) are markers of bone formation and are also elevated suggesting that the bone matrix suffers from a higher turnover. Serum Ca²âº (total and ionized) do not changed by TBT treatment although hypercalciuria is observed. CONCLUSION: It is known that Sn atoms have three valence states (Sn²âº, Sn³âº, and Sn4⁺); hence, we hypothesized that Sn (more likely Sn²âº) could be competing with Ca²âº and/or Mg²âº in hydroxyapatite mineral matrix to disturb bone turnover. Further work is needed to confirm this hypothesis.


Asunto(s)
Densidad Ósea/efectos de los fármacos , Resorción Ósea , Disruptores Endocrinos/toxicidad , Hipercalciuria , Osteogénesis/efectos de los fármacos , Compuestos de Trialquiltina/toxicidad , Animales , Resorción Ósea/inducido químicamente , Resorción Ósea/diagnóstico por imagen , Resorción Ósea/metabolismo , Femenino , Hipercalciuria/inducido químicamente , Hipercalciuria/diagnóstico por imagen , Hipercalciuria/metabolismo , Ratas , Ratas Wistar , Microtomografía por Rayos X
2.
Cell Physiol Biochem ; 51(1): 356-374, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30453296

RESUMEN

BACKGROUND/AIMS: Osteoporosis is a bone metabolic disease that affects mostly post-menopausal women. There has been shown that vitamin K (VK) supplementation during menopause may decrease bone loss as well as risk of bone breaking. Aiming to clarify the beneficial role of VK in bone metabolism during menopause, we investigated mineral metabolism and bone ultrastructure of ovariectomized (OVX) mice. METHODS: To determine the effects chronic use of VK in bone structure and mineral metabolism in OVX mice, we used several methods, such as DXA, µCTScan, and SEM as well as biomolecular techniques, such as ELISA and qRT-PCR. In addition, complete analysis of serum hormonal and other molecules associated to bone and lipid metabolism were evaluated overview the effects of VK in menopause murine model. RESULTS: VK treatment significantly affects Pi metabolism independently of OVX, changing Pi plasma, urinary output, balance, and Pi bone mass. Interestingly, VK also increased VLDL in mice independently of castration. In addition, VK increased compact bone mass in OVX mice when we evaluated it by DXA, histomorphometry, µCTScanning. VK increased bone formation markers, osteocalcin, HYP- osteocalcin, and AP whereas it decreased bone resorption markers, such as urinary DPD/creatinine ratio and plasmatic TRAP. Surprisingly, SEM images revealed that VK treatment led to amelioration of microfractures observed in OVX untreated controls. In addition, SHAM operated VK treated mice exhibited higher number of migrating osteoblasts and in situ secretion of AP. OVX led to decreased to in situ secretion of AP that was restored by VK treatment. Moreover, VK treatment increased mRNA expression of bone Calbindin 28KDa independently of OVX. CONCLUSION: VK treatment in OVX mice exhibited beneficial effects on bone ultrastructure, mostly by altering osteoblastic function and secretion of organic bone matrix. Therefore, VK could be useful to treat osteopenic/osteoporotic patients.


Asunto(s)
Densidad Ósea/efectos de los fármacos , Huesos/metabolismo , Vitamina K/farmacología , Fosfatasa Alcalina/sangre , Animales , Huesos/diagnóstico por imagen , Huesos/ultraestructura , Calbindinas/genética , Calbindinas/metabolismo , Creatinina/orina , Suplementos Dietéticos , Modelos Animales de Enfermedad , Femenino , Metabolismo de los Lípidos , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Osteocalcina/sangre , Osteoporosis/metabolismo , Osteoporosis/patología , Ovariectomía , Hormona Paratiroidea/sangre , Columna Vertebral/diagnóstico por imagen , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA