Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 93(11): 113539, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36461414

RESUMEN

General Fusion is building the Fusion Demonstration Plant to demonstrate a magnetized target fusion scheme in which a deuterium plasma is heated from 200 eV to 10 keV by piston-driven compression of a liquid-lithium liner. The multilayer coaxial time-of-flight neutron emission spectrometer is designed to measure the ion temperature near peak compression at which time the neutron yield will approach 1018 neutrons/s. The neutron energy distribution is expected to be Gaussian since the machine uses no neutral beam or radio-frequency heating. In this case, analysis shows that as few as 500 coincidence events should be sufficient to accurately measure the ion temperature. This enables a fast time resolution of 10 µs, which is required to track the rapid change in temperature approaching peak compression. We overcome the challenges of neutron pile-up and event ambiguity with a compact design having two layers of segmented scintillators. The error in the ion temperature measurement is computed as a function of the neutron spectrometer's geometric parameters and used to optimize the design for the case of reaching 10 keV at peak compression.

3.
Phys Med Biol ; 61(22): 7934-7956, 2016 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-27779126

RESUMEN

A full-ring PET insert consisting of 16 PET detector modules was designed and constructed to fit within the 114 mm diameter gradient bore of a Bruker 7 T MRI. The individual detector modules contain two silicon photomultiplier (SiPM) arrays, dual-layer offset LYSO crystal arrays, and high-definition multimedia interface (HDMI) cables for both signal and power transmission. Several different RF shielding configurations were assessed prior to construction of a fully assembled PET insert using a combination of carbon fibre and copper foil for RF shielding. MR-compatibility measurements included field mapping of the static magnetic field (B 0) and the time-varying excitation field (B 1) as well as acquisitions with multiple pulse sequences: spin echo (SE), rapid imaging with refocused echoes (RARE), fast low angle shot (FLASH) gradient echo, and echo planar imaging (EPI). B 0 field maps revealed a small degradation in the mean homogeneity (+0.1 ppm) when the PET insert was installed and operating. No significant change was observed in the B 1 field maps or the image homogeneity of various MR images, with a 9% decrease in the signal-to-noise ratio (SNR) observed only in EPI images acquired with the PET insert installed and operating. PET detector flood histograms, photopeak amplitudes, and energy resolutions were unchanged in individual PET detector modules when acquired during MRI operation. There was a small baseline shift on the PET detector signals due to the switching amplifiers used to power MRI gradient pulses. This baseline shift was observable when measured with an oscilloscope and varied as a function of the gradient duty cycle, but had no noticeable effect on the performance of the PET detector modules. Compact front-end electronics and effective RF shielding led to minimal cross-interference between the PET and MRI systems. Both PET detector and MRI performance was excellent, whether operating as a standalone system or a hybrid PET/MRI.


Asunto(s)
Imagen por Resonancia Magnética/instrumentación , Imagen Multimodal/instrumentación , Tomografía de Emisión de Positrones/instrumentación , Animales , Imagen Eco-Planar , Diseño de Equipo , Imagen por Resonancia Magnética/métodos , Imagen Multimodal/métodos , Tomografía de Emisión de Positrones/métodos , Relación Señal-Ruido
4.
Phys Med Biol ; 57(6): 1685-700, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22398310

RESUMEN

The imaging performance of a high-resolution preclinical micro-positron emission tomography (micro-PET) system employing liquid xenon (LXe) as the gamma-ray detection medium was simulated. The arrangement comprises a ring of detectors consisting of trapezoidal LXe time projection ionization chambers and two arrays of large area avalanche photodiodes for the measurement of ionization charge and scintillation light. A key feature of the LXePET system is the ability to identify individual photon interactions with high energy resolution and high spatial resolution in three dimensions and determine the correct interaction sequence using Compton reconstruction algorithms. The simulated LXePET imaging performance was evaluated by computing the noise equivalent count rate, the sensitivity and point spread function for a point source according to the NEMA-NU4 standard. The image quality was studied with a micro-Derenzo phantom. Results of these simulation studies included noise equivalent count rate peaking at 1326 kcps at 188 MBq (705 kcps at 184 MBq) for an energy window of 450-600 keV and a coincidence window of 1 ns for mouse (rat) phantoms. The absolute sensitivity at the center of the field of view was 12.6%. Radial, tangential and axial resolutions of (22)Na point sources reconstructed with a list-mode maximum likelihood expectation maximization algorithm were ≤0.8 mm (full-width at half-maximum) throughout the field of view. Hot-rod inserts of <0.8 mm diameter were resolvable in the transaxial image of a micro-Derenzo phantom. The simulations show that a LXe system would provide new capabilities for significantly enhancing PET images.


Asunto(s)
Tomografía de Emisión de Positrones/estadística & datos numéricos , Algoritmos , Animales , Fenómenos Biofísicos , Simulación por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Ratones , Fantasmas de Imagen , Tomografía de Emisión de Positrones/instrumentación , Ratas , Xenón
5.
Med Phys ; 39(7Part4): 4640, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28516645

RESUMEN

Silicon photomultiplier (SiPM) detectors are rapidly becoming the detector of choice for research and development of new detectors for positron emission tomography (PET) due to their combination of high gain, fast timing, compact form factor and ability to function in a magnetic field. We are investigating using SiPM based detectors in a compact PET system designed to be inserted into a 7T animal MRI system and enable simultaneous PET/MRI imaging. In order to understand the level of thermal stability required for this PET system, we examined the stability of a prototype SiPM detector vs. temperature. A detector was constructed using a SensL SPMArray4 SiPM array coupled to a LYSO scintillator crystal array. The temperature of the detector was varied between 23 and 60°C in 5°C steps. At each temperature setting data were collected to characterize the detector flood histogram, photopeak amplitude and energy resolution at 511 keV, timing resolution and signal arrival time. While the flood image showed no noticeable changes with temperature, the 511 keV photopeak amplitude showed a linear decrease of 1.5%/°C and the energy resolution degraded by 0.08%/°C. The timing resolution degraded by 1.5 ns, from 3.5 ns to 5 ns when the temperature changed from 23 to 60°C. Over this temperature range there was a shift in the signal arrival time of approximately 3 ns. These results demonstrate that the detector can be operated over a wide range of temperature, giving a large degree of flexibility in choosing an operating temperature set-point for our PET system.

6.
Med Phys ; 39(7Part4): 4641-4642, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28516664

RESUMEN

Our group is developing a small animal PET scanner which would fit in a 7 Tesla MRI scanner to provide simultaneous PET and MR acquisitions and images. There is very little room for the PET detectors and we must use nonmagnetic materials. This presentation describes preliminary work with two PET detectors consisting of LYSO blocks each with two crystal layers: 49 1.67*1.67*6.0 mm on the bottom layer and 36 4.0 mm deep crystals on the top layer. These are mounted on SensL 4*4 arrays of silicon photo-multipliers whose outputs are multiplexed to provide three signals: Energy, X, Y. These detectors were mounted on translation stages and scanned past a 0.25 mm diameter 370 MBq Na-18 source embedded in tissue equivalent plastic. The results were compared with similar single layer crystal blocks with 10 mm deep crystals to assess the advantage of dual layer crystals to reduce radial blurring in a PET scanner with a diameter of only 64 mm. The ability to identify correctly each crystal is reported as its resolvability index, (RI), defined as the (crystal response FWHM)/(crystal's separation) in the crystal identification matrix. For the dual layer block RI =0.44, and for dual layer block RI=0.22. The coincidence response resolution for the single layer block varied from 1.23±0.05 mm at the centre of the scanner to 3.09±0.10 mm at 15.8 mm radius, while the dual layer block varied from 1.31±0.06 to 1.96±0.51 mm over the same range, confirming the Monte-Carlo simulations showing reduced radial blurring.

7.
Phys Rev Lett ; 85(17): 3595-9, 2000 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-11030959

RESUMEN

A measurement of direct photon production in 208Pb+208Pb collisions at 158A GeV has been carried out in the CERN WA98 experiment. The invariant yield of direct photons in central collisions is extracted as a function of transverse momentum in the interval 0.51.5 GeV/c. The result constitutes the first observation of direct photons in ultrarelativistic heavy-ion collisions. It could be significant for diagnosis of quark-gluon-plasma formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...