Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Gastroenterology ; 166(2): 298-312.e14, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37913894

RESUMEN

BACKGROUND & AIMS: The highly heterogeneous cellular and molecular makeup of pancreatic ductal adenocarcinoma (PDAC) not only fosters exceptionally aggressive tumor biology, but contradicts the current concept of one-size-fits-all therapeutic strategies to combat PDAC. Therefore, we aimed to exploit the tumor biological implication and therapeutic vulnerabilities of a clinically relevant molecular PDAC subgroup characterized by SMAD4 deficiency and high expression of the nuclear factor of activated T cells (SMAD4-/-/NFATc1High). METHODS: Transcriptomic and clinical data were analyzed to determine the prognostic relevance of SMAD4-/-/NFATc1High cancers. In vitro and in vivo oncogenic transcription factor complex formation was studied by immunoprecipitation, proximity ligation assays, and validated cross model and species. The impact of SMAD4 status on therapeutically targeting canonical KRAS signaling was mechanistically deciphered and corroborated by genome-wide gene expression analysis and genetic perturbation experiments, respectively. Validation of a novel tailored therapeutic option was conducted in patient-derived organoids and cells and transgenic as well as orthotopic PDAC models. RESULTS: Our findings determined the tumor biology of an aggressive and chemotherapy-resistant SMAD4-/-/NFATc1High subgroup. Mechanistically, we identify SMAD4 deficiency as a molecular prerequisite for the formation of an oncogenic NFATc1/SMAD3/cJUN transcription factor complex, which drives the expression of RRM1/2. RRM1/2 replenishes nucleoside pools that directly compete with metabolized gemcitabine for DNA strand incorporation. Disassembly of the NFATc1/SMAD3/cJUN complex by mitogen-activated protein kinase signaling inhibition normalizes RRM1/2 expression and synergizes with gemcitabine treatment in vivo to reduce the proliferative index. CONCLUSIONS: Our results suggest that PDAC characterized by SMAD4 deficiency and oncogenic NFATc1/SMAD3/cJUN complex formation exposes sensitivity to a mitogen-activated protein kinase signaling inhibition and gemcitabine combination therapy.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gemcitabina , Línea Celular Tumoral , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteína smad3/metabolismo
2.
Gut ; 71(12): 2561-2573, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35365570

RESUMEN

OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) can persist in the stage of simple hepatic steatosis or progress to steatohepatitis (NASH) with an increased risk for cirrhosis and cancer. We examined the mechanisms controlling the progression to severe NASH in order to develop future treatment strategies for this disease. DESIGN: NFATc1 activation and regulation was examined in livers from patients with NAFLD, cultured and primary hepatocytes and in transgenic mice with differential hepatocyte-specific expression of the transcription factor (Alb-cre, NFATc1c.a . and NFATc1Δ/Δ ). Animals were fed with high-fat western diet (WD) alone or in combination with tauroursodeoxycholic acid (TUDCA), a candidate drug for NAFLD treatment. NFATc1-dependent ER stress-responses, NLRP3 inflammasome activation and disease progression were assessed both in vitro and in vivo. RESULTS: NFATc1 expression was weak in healthy livers but strongly induced in advanced NAFLD stages, where it correlates with liver enzyme values as well as hepatic inflammation and fibrosis. Moreover, high-fat WD increased NFATc1 expression, nuclear localisation and activation to promote NAFLD progression, whereas hepatocyte-specific depletion of the transcription factor can prevent mice from disease acceleration. Mechanistically, NFATc1 drives liver cell damage and inflammation through ER stress sensing and activation of the PERK-CHOP unfolded protein response (UPR). Finally, NFATc1-induced disease progression towards NASH can be blocked by TUDCA administration. CONCLUSION: NFATc1 stimulates NAFLD progression through chronic ER stress sensing and subsequent activation of terminal UPR signalling in hepatocytes. Interfering with ER stress-responses, for example, by TUDCA, protects fatty livers from progression towards manifest NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hígado/metabolismo , Hepatocitos/metabolismo , Factores de Transcripción/metabolismo , Inflamación/metabolismo , Ratones Transgénicos , Progresión de la Enfermedad , Ratones Endogámicos C57BL , Factores de Transcripción NFATC/metabolismo
3.
Cells ; 10(12)2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34943970

RESUMEN

BACKGROUND: The Nuclear Factor of Activated T-cells 1 (NFATc1) transcription factor and the methyltransferase Enhancer of Zeste Homolog 2 (EZH2) significantly contribute to the aggressive phenotype of pancreatic ductal adenocarcinoma (PDAC). Herein, we aimed at dissecting the mechanistic background of their interplay in PDAC progression. METHODS: NFATc1 and EZH2 mRNA and protein expression and complex formation were determined in transgenic PDAC models and human PDAC specimens. NFATc1 binding on the Ezh2 gene and the consequences of perturbed NFATc1 expression on Ezh2 transcription were explored by Chromatin Immunoprecipitation (ChIP) and upon transgenic or siRNA-mediated interference with NFATc1 expression, respectively. Integrative analyses of RNA- and ChIP-seq data was performed to explore NFATc1-/EZH2-dependent gene signatures. RESULTS: NFATc1 targets the Ezh2 gene for transcriptional activation and biochemically interacts with the methyltransferase in murine and human PDAC. Surprisingly, our genome-wide binding and expression analyses do not link the protein complex to joint gene regulation. In contrast, our findings provide evidence for chromatin-independent functions of the NFATc1:EZH2 complex and reveal posttranslational EZH2 phosphorylation at serine 21 as a prerequisite for robust complex formation. CONCLUSION: Our findings disclose a previously unknown NFATc1-EZH2 axis operational in the pancreas and provide mechanistic insights into the conditions fostering NFATc1:EZH2 complex formation in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Factores de Transcripción NFATC/genética , Neoplasias Pancreáticas/genética , Animales , Carcinoma Ductal Pancreático/patología , Proliferación Celular/genética , Cromatina/genética , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Proteínas de Homeodominio/genética , Humanos , Ratones , Páncreas/metabolismo , Páncreas/patología , Neoplasias Pancreáticas/patología , Procesamiento Proteico-Postraduccional/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , ARN Interferente Pequeño/genética , Transactivadores/genética
4.
Gastroenterology ; 142(2): 388-98.e1-7, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22079596

RESUMEN

BACKGROUND & AIMS: Transcriptional silencing of the p15(INK4b) tumor suppressor pathway overcomes cellular protection against unrestrained proliferation in cancer. Here we show a novel pathway involving the oncogenic transcription factor nuclear factor of activated T cells (NFAT) c2 targeting a p15(INK4b)-mediated failsafe mechanism to promote pancreatic cancer tumor growth. METHODS: Immunohistochemistry, real-time polymerase chain reaction, immunoblotting, and immunofluorescence microscopy were used for expression studies. Cancer growth was assessed in vitro by [(3)H]thymidine incorporation, colony formation assays, and in vivo using xenograft tumor models. Protein-protein interactions, promoter regulation, and local histone modifications were analyzed by immunoprecipitation, DNA pull-down, reporter, and chromatin immunoprecipitation assays. RESULTS: Our study uncovered induction of NFATc2 in late-stage pancreatic intraepithelial neoplasia lesions with increased expression in tumor cell nuclei of advanced cancers. In the nucleus, NFATc2 targets the p15(INK4b) promoter for inducible heterochromatin formation and silencing. NFATc2 binding to its cognate promoter site induces stepwise recruitment of the histone methyltransferase Suv39H1, causes local H3K9 trimethylation, and allows docking of heterochromatin protein HP1γ to the repressor complex. Conversely, inactivation of NFATc2 disrupts this repressor complex assembly and local heterochromatin formation, resulting in restoration of p15(INK4b) expression and inhibition of pancreatic cancer growth in vitro and in vivo. CONCLUSIONS: Here we describe a novel mechanism for NFATc2-mediated gene regulation and identify a functional link among its repressor activity, the silencing of the suppressor pathway p15(INK4b), and its pancreatic cancer growth regulatory functions. Thus, we provide evidence that inactivation of oncogenic NFATc2 might be an attractive strategy in treatment of pancreatic cancer.


Asunto(s)
Adenocarcinoma/metabolismo , Biomarcadores de Tumor/metabolismo , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismo , Heterocromatina/metabolismo , Factores de Transcripción NFATC/metabolismo , Neoplasias Pancreáticas/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patología , Animales , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/metabolismo , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Femenino , Silenciador del Gen , Humanos , Ratones , Ratones Desnudos , Factores de Transcripción NFATC/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Distribución Aleatoria , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
5.
J Biol Chem ; 286(33): 28761-28771, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21628454

RESUMEN

The aminobisphosphonate zoledronic acid has elicited significant attention due to its remarkable anti-tumoral activity, although its detailed mechanism of action remains unclear. Here, we demonstrate the existence of a nuclear GSK-3ß-NFATc2 stabilization pathway that promotes breast and pancreatic cancer growth in vitro and in vivo and serves as a bona fide target of zoledronic acid. Specifically, the serine/threonine kinase GSK-3ß stabilizes nuclear NFATc2 through phosphorylation of the serine-rich SP2 domain, thus protecting the transcription factor from E3-ubiquitin ligase HDM2-mediated proteolysis. Zoledronic acid disrupts this NFATc2 stabilization pathway through two mechanisms, namely GSK-3ß inhibition and induction of HDM2 activity. Upon nuclear accumulation, HDM2 targets unphosphorylated NFATc2 for ubiquitination at acceptor lysine residues Lys-684/Lys-897 and hence labels the factor for subsequent proteasomal degradation. Conversely, mutagenesis-induced constitutive serine phosphorylation (Ser-215, Ser-219, and Ser-223) of the SP2 domain prevents NFATc2 from HDM2-mediated ubiquitination and degradation and consequently rescues cancer cells from growth suppression by zoledronic acid. In conclusion, this study demonstrates a critical role of the GSK-3ß-HDM2 signaling loop in the regulation of NFATc2 protein stability and growth promotion and suggests that double targeting of this pathway is responsible, at least to a significant part, for the potent and reliable anti-tumoral effects of zoledronic acid.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Núcleo Celular/metabolismo , Difosfonatos/farmacología , Imidazoles/farmacología , Factores de Transcripción NFATC/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Transporte Activo de Núcleo Celular/efectos de los fármacos , Transporte Activo de Núcleo Celular/genética , Animales , Conservadores de la Densidad Ósea/farmacología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Núcleo Celular/genética , Femenino , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Ratones , Ratones Desnudos , Factores de Transcripción NFATC/genética , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/genética , Estabilidad Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Ubiquitinación/efectos de los fármacos , Ubiquitinación/genética , Ácido Zoledrónico
6.
J Biol Chem ; 285(35): 27241-27250, 2010 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-20516082

RESUMEN

Transforming growth factor beta (TGF-beta) has a dual role in carcinogenesis, acting as a growth inhibitor in early tumor stages and a promoter of cell proliferation in advanced diseases. Although this cellular phenomenon is well established, the underlying molecular mechanisms remain elusive. Here, we report that sequential induction of NFAT and c-Myc transcription factors is sufficient and required for the TGF-beta switch from a cell cycle inhibitor to a growth promoter pathway in cancer cells. Mechanistically, TGF-beta induces in a calcineurin-dependent manner the expression and activation of NFAT factors, which then translocate into the nucleus to promote c-Myc expression. In response to TGF-beta, activated NFAT factors bind to and displace Smad3 repressor complexes from the previously identified TGF-beta inhibitory element (TIE) to transactivate the c-Myc promoter. c-Myc in turn stimulates cell cycle progression and growth through up-regulation of D-type cyclins. Most importantly, NFAT knockdown not only prevents c-Myc activation and cell proliferation, but also partially restores TGF-beta-induced cell cycle arrest and growth suppression. Taken together, this study provides the first evidence for a Smad-independent master regulatory pathway in TGF-beta-promoted cell growth that is defined by sequential transcriptional activation of NFAT and c-Myc factors.


Asunto(s)
Ciclo Celular , Factores de Transcripción NFATC/metabolismo , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transcripción Genética , Factor de Crecimiento Transformador beta/metabolismo , Animales , Calcineurina/genética , Calcineurina/metabolismo , Línea Celular Tumoral , Humanos , Ratones , Factores de Transcripción NFATC/genética , Neoplasias/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Smad/genética , Proteínas Smad/metabolismo , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética , Factor de Crecimiento Transformador beta/farmacología
7.
Gastroenterology ; 138(3): 1189-99.e1-2, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19900447

RESUMEN

BACKGROUND & AIMS: Induction of immediate early transcription factors (ITF) represents the first transcriptional program controlling mitogen-stimulated cell cycle progression in cancer. Here, we examined the transcriptional mechanisms regulating the ITF protein c-Myc and its role in pancreatic cancer growth in vitro and in vivo. METHODS: Expression of ITF proteins was examined by reverse-transcription polymerase chain reaction and immunoblotting, and its implications in cell cycle progression and growth was determined by flow cytometry and [(3)H]-thymidine incorporation. Intracellular Ca(2+) concentrations, calcineurin activity, and cellular nuclear factor of activated T cells (NFAT) distribution were analyzed. Transcription factor complex formations and promoter regulation were examined by immunoprecipitations, reporter gene assays, and chromatin immunoprecipitation. Using a combination of RNA interference knockdown technology and xenograft models, we analyzed the significance for pancreatic cancer tumor growth. RESULTS: Serum promotes pancreatic cancer growth through induction of the proproliferative NFAT/c-Myc axis. Mechanistically, serum increases intracellular Ca(2+) concentrations and activates the calcineurin/NFAT pathway to induce c-Myc transcription. NFAT binds to a serum responsive element within the proximal promoter, initiates p300-dependent histone acetylation, and creates a local chromatin structure permissive for the inducible recruitment of Ets-like gene (ELK)-1, a protein required for maximal activation of the c-Myc promoter. The functional significance of this novel pathway was emphasized by impaired c-Myc expression, G1 arrest, and reduced tumor growth upon NFAT depletion in vitro and in vivo. CONCLUSIONS: Our study uncovers a novel mechanism regulating cell growth and identifies the NFAT/ELK complex as modulators of early stages of mitogen-stimulated proliferation in pancreatic cancer cells.


Asunto(s)
Adenocarcinoma/metabolismo , Proliferación Celular , Ensamble y Desensamble de Cromatina , Histonas/metabolismo , Factores de Transcripción NFATC/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Acetilación , Adenocarcinoma/genética , Adenocarcinoma/patología , Animales , Sitios de Unión , Western Blotting , Calcineurina/metabolismo , Calcio/metabolismo , Ciclo Celular , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Citometría de Flujo , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Desnudos , Factores de Transcripción NFATC/genética , Trasplante de Neoplasias , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/genética , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Suero/metabolismo , Elemento de Respuesta al Suero , Transducción de Señal , Factores de Tiempo , Transcripción Genética , Transfección , Proteína Elk-1 con Dominio ets/metabolismo , Factores de Transcripción p300-CBP/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA