Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neural Eng ; 20(4)2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37531949

RESUMEN

Objective.Epilepsy is a neurological disorder characterized by recurrent seizures which vary widely in severity, from clinically silent to prolonged convulsions. Measuring severity is crucial for guiding therapy, particularly when complete control is not possible. Seizure diaries, the current standard for guiding therapy, are insensitive to the duration of events or the propagation of seizure activity across the brain. We present a quantitative seizure severity score that incorporates electroencephalography (EEG) and clinical data and demonstrate how it can guide epilepsy therapies.Approach.We collected intracranial EEG and clinical semiology data from 54 epilepsy patients who had 256 seizures during invasive, in-hospital presurgical evaluation. We applied an absolute slope algorithm to EEG recordings to identify seizing channels. From this data, we developed a seizure severity score that combines seizure duration, spread, and semiology using non-negative matrix factorization. For validation, we assessed its correlation with independent measures of epilepsy burden: seizure types, epilepsy duration, a pharmacokinetic model of medication load, and response to epilepsy surgery. We investigated the association between the seizure severity score and preictal network features.Main results.The seizure severity score augmented clinical classification by objectively delineating seizure duration and spread from recordings in available electrodes. Lower preictal medication loads were associated with higher seizure severity scores (p= 0.018, 97.5% confidence interval = [-1.242, -0.116]) and lower pre-surgical severity was associated with better surgical outcome (p= 0.042). In 85% of patients with multiple seizure types, greater preictal change from baseline was associated with higher severity.Significance.We present a quantitative measure of seizure severity that includes EEG and clinical features, validated on gold standard in-patient recordings. We provide a framework for extending our tool's utility to ambulatory EEG devices, for linking it to seizure semiology measured by wearable sensors, and as a tool to advance data-driven epilepsy care.


Asunto(s)
Epilepsia , Convulsiones , Humanos , Convulsiones/diagnóstico , Convulsiones/terapia , Electroencefalografía/métodos , Encéfalo/cirugía , Electrocorticografía
2.
Epilepsia Open ; 8(2): 559-570, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36944585

RESUMEN

OBJECTIVE: Epilepsy surgery is an effective treatment for drug-resistant patients. However, how different surgical approaches affect long-term brain structure remains poorly characterized. Here, we present a semiautomated method for quantifying structural changes after epilepsy surgery and compare the remote structural effects of two approaches, anterior temporal lobectomy (ATL), and selective amygdalohippocampectomy (SAH). METHODS: We studied 36 temporal lobe epilepsy patients who underwent resective surgery (ATL = 22, SAH = 14). All patients received same-scanner MR imaging preoperatively and postoperatively (mean 2 years). To analyze postoperative structural changes, we segmented the resection zone and modified the Advanced Normalization Tools (ANTs) longitudinal cortical pipeline to account for resections. We compared global and regional annualized cortical thinning between surgical treatments. RESULTS: Across procedures, there was significant cortical thinning in the ipsilateral insula, fusiform, pericalcarine, and several temporal lobe regions outside the resection zone as well as the contralateral hippocampus. Additionally, increased postoperative cortical thickness was seen in the supramarginal gyrus. Patients treated with ATL exhibited greater annualized cortical thinning compared with SAH cases (ATL: -0.08 ± 0.11 mm per year, SAH: -0.01 ± 0.02 mm per year, t = 2.99, P = 0.006). There were focal postoperative differences between the two treatment groups in the ipsilateral insula (P = 0.039, corrected). Annualized cortical thinning rates correlated with preoperative cortical thickness (r = 0.60, P < 0.001) and had weaker associations with age at surgery (r = -0.33, P = 0.051) and disease duration (r = -0.42, P = 0.058). SIGNIFICANCE: Our evidence suggests that selective procedures are associated with less cortical thinning and that earlier surgical intervention may reduce long-term impacts on brain structure.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Humanos , Epilepsia del Lóbulo Temporal/cirugía , Adelgazamiento de la Corteza Cerebral , Lobectomía Temporal Anterior/métodos , Lóbulo Temporal/cirugía
3.
Brain ; 146(6): 2248-2258, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36623936

RESUMEN

Over the past 10 years, the drive to improve outcomes from epilepsy surgery has stimulated widespread interest in methods to quantitatively guide epilepsy surgery from intracranial EEG (iEEG). Many patients fail to achieve seizure freedom, in part due to the challenges in subjective iEEG interpretation. To address this clinical need, quantitative iEEG analytics have been developed using a variety of approaches, spanning studies of seizures, interictal periods, and their transitions, and encompass a range of techniques including electrographic signal analysis, dynamical systems modeling, machine learning and graph theory. Unfortunately, many methods fail to generalize to new data and are sensitive to differences in pathology and electrode placement. Here, we critically review selected literature on computational methods of identifying the epileptogenic zone from iEEG. We highlight shared methodological challenges common to many studies in this field and propose ways that they can be addressed. One fundamental common pitfall is a lack of open-source, high-quality data, which we specifically address by sharing a centralized high-quality, well-annotated, multicentre dataset consisting of >100 patients to support larger and more rigorous studies. Ultimately, we provide a road map to help these tools reach clinical trials and hope to improve the lives of future patients.


Asunto(s)
Electrocorticografía , Epilepsia , Humanos , Electrocorticografía/métodos , Electroencefalografía/métodos , Epilepsia/cirugía , Epilepsia/patología , Convulsiones/diagnóstico , Convulsiones/cirugía , Proyectos de Investigación
4.
Epilepsia ; 64(3): 754-768, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36484572

RESUMEN

OBJECTIVE: Interictal spikes help localize seizure generators as part of surgical planning for drug-resistant epilepsy. However, there are often multiple spike populations whose frequencies change over time, influenced by brain state. Understanding state changes in spike rates will improve our ability to use spikes for surgical planning. Our goal was to determine the effect of sleep and seizures on interictal spikes, and to use sleep and seizure-related changes in spikes to localize the seizure-onset zone (SOZ). METHODS: We performed a retrospective analysis of intracranial electroencephalography (EEG) data from patients with focal epilepsy. We automatically detected interictal spikes and we classified different time periods as awake or asleep based on the ratio of alpha to delta power, with a secondary analysis using the recently published SleepSEEG algorithm. We analyzed spike rates surrounding sleep and seizures. We developed a model to localize the SOZ using state-dependent spike rates. RESULTS: We analyzed data from 101 patients (54 women, age range 16-69). The normalized alpha-delta power ratio accurately classified wake from sleep periods (area under the curve = .90). Spikes were more frequent in sleep than wakefulness and in the post-ictal compared to the pre-ictal state. Patients with temporal lobe epilepsy had a greater wake-to-sleep and pre- to post-ictal spike rate increase compared to patients with extra-temporal epilepsy. A machine-learning classifier incorporating state-dependent spike rates accurately identified the SOZ (area under the curve = .83). Spike rates tended to be higher and better localize the seizure-onset zone in non-rapid eye movement (NREM) sleep than in wake or REM sleep. SIGNIFICANCE: The change in spike rates surrounding sleep and seizures differs between temporal and extra-temporal lobe epilepsy. Spikes are more frequent and better localize the SOZ in sleep, particularly in NREM sleep. Quantitative analysis of spikes may provide useful ancillary data to localize the SOZ and improve surgical planning.


Asunto(s)
Epilepsias Parciales , Epilepsia del Lóbulo Temporal , Epilepsia , Humanos , Femenino , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Convulsiones/cirugía , Epilepsia/cirugía , Sueño , Electroencefalografía
6.
Orphanet J Rare Dis ; 17(1): 248, 2022 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-35752848

RESUMEN

BACKGROUND: Hyperinsulinism hyperammonemia (HI/HA) syndrome is caused by activating mutations in GLUD1, encoding glutamate dehydrogenase (GDH). Atypical absence seizures and neuropsychological disorders occur at high rates in this form of hyperinsulinism. Dysregulated central nervous system (CNS) glutamate balance, due to GDH overactivity in the brain, has been hypothesized to play a role. This study aimed to describe the neurologic phenotype in HI/HA syndrome and investigate CNS glutamate levels using glutamate weighted chemical exchange saturation transfer magnetic resonance imaging (GluCEST MRI). In this cross-sectional study, 12 subjects with HI/HA syndrome had plasma ammonia measurement, self- or parent-completed neurocognitive assessments, electroencephalogram (EEG), and GluCEST MRI at 7 T performed. GluCEST MRI measures were compared to a historic reference population of 10 healthy adults. RESULTS: Subjects were five males and seven females with median age of 25.5 years. Seventy-five percent of subjects reported a history of neurodevelopmental problems and 42% had neurocognitive assessment scores outside the normal range. Fifty percent had interictal EEG findings of generalized, irregular spike and wave discharges. Higher variability in hippocampal GluCEST asymmetry (p = 0.002), and in peak hippocampal GluCEST values (p = 0.008), was observed in HI/HA subjects (n = 9 with interpretable MRI) compared to the healthy reference population (n = 10). CONCLUSIONS: The high prevalence of abnormal neurocognitive assessment scores and interictal EEG findings observed highlights the importance of longitudinal neuropsychological assessment for individuals with HI/HA syndrome. Our findings demonstrate the potential application of GluCEST to investigate persistent knowledge gaps in the mechanisms underlying the unique neurophenotype of this disorder.


Asunto(s)
Hiperamonemia , Hiperinsulinismo , Estudios Transversales , Femenino , Glutamato Deshidrogenasa/genética , Glutamatos , Humanos , Hiperamonemia/genética , Hiperinsulinismo/genética , Hipoglucemia , Masculino , Fenotipo
7.
Neuroimage ; 254: 118986, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35339683

RESUMEN

Brain maps, or atlases, are essential tools for studying brain function and organization. The abundance of available atlases used across the neuroscience literature, however, creates an implicit challenge that may alter the hypotheses and predictions we make about neurological function and pathophysiology. Here, we demonstrate how parcellation scale, shape, anatomical coverage, and other atlas features may impact our prediction of the brain's function from its underlying structure. We show how network topology, structure-function correlation (SFC), and the power to test specific hypotheses about epilepsy pathophysiology may change as a result of atlas choice and atlas features. Through the lens of our disease system, we propose a general framework and algorithm for atlas selection. This framework aims to maximize the descriptive, explanatory, and predictive validity of an atlas. Broadly, our framework strives to provide empirical guidance to neuroscience research utilizing the various atlases published over the last century.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Algoritmos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Humanos , Convulsiones/diagnóstico por imagen
8.
Netw Neurosci ; 6(3): 834-849, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36607198

RESUMEN

To determine the effect of implanting electrodes on electrographic features of nearby and connected brain regions in patients with drug-resistant epilepsy, we analyzed intracranial EEG recordings from 10 patients with drug-resistant epilepsy who underwent implant revision (placement of additional electrodes) during their hospitalization. We performed automated spike detection and measured EEG functional networks. We analyzed the original electrodes that remained in place throughout the full EEG recording, and we measured the change in spike rates and network connectivity in these original electrodes in response to implanting new electrodes. There was no change in overall spike rate pre- to post-implant revision (t(9) = 0.1, p = 0.95). The peri-revision change in the distribution of spike rate and connectivity across electrodes was no greater than chance (Monte Carlo method, spikes: p = 0.40, connectivity: p = 0.42). Electrodes closer to or more functionally connected to the revision site had no greater change in spike rate or connectivity than more distant or less connected electrodes. Changes in electrographic features surrounding electrode implantation are no greater than baseline fluctuations occurring throughout the intracranial recording. These findings argue against an implant effect on spikes or network connectivity in nearby or connected brain regions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...