Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-34078587

RESUMEN

BACKGROUND: Extracorporeal photopheresis (ECP) is an immunomodulatory therapy used to treat graft-vs-host disease (GVHD) in adults and children. Few studies have examined its use in children. OBJECTIVE: To describe demographic characteristics, clinical response, adverse effects, and outcomes in a series of pediatric patients with acute or chronic GVHD treated with ECP. MATERIAL AND METHODS: We included all pediatric patients with acute or chronic GVHD treated with ECP by the dermatology department of Hospital Italiano de Buenos Aires between January 2012 and December 2018. We used the UVAR-XTS™ system (2 patients) and the CELLEX system (7 patients). Patients with acute GVHD received 2 sessions a week and were reassessed at 1 month, while those with chronic GVHD received 2 sessions every 2 weeks and were reassessed at 3 months. Treatment duration in both scenarios varied according to response. RESULTS: We evaluated 9 pediatric patients with corticosteroid-refractory, -dependent, and/or -resistant GVHD treated with ECP. Seven responded to treatment and 2 did not. Response was complete in 1 of the 9 patients with skin involvement and partial in 7. Complete response rates for the other sites of involvement were 60% (3/5) for the liver, 50% (1/2) for the gastrointestinal system, and 80% (4/5) for mucous membranes. Two patients died during the study period. CONCLUSION: ECP is a good treatment option for pediatric patients with acute or chronic GVHD.

2.
Artículo en Inglés, Español | MEDLINE | ID: mdl-33621559

RESUMEN

BACKGROUND: Extracorporeal photopheresis (ECP) is an immunomodulatory therapy used to treat graft-vs-host disease (GVHD) in adults and children. Few studies have examined its use in children. OBJECTIVE: To describe demographic characteristics, clinical response, adverse effects, and outcomes in a series of pediatric patients with acute or chronic GVHD treated with ECP. MATERIAL AND METHODS: We included all pediatric patients with acute or chronic GVHD treated with ECP by the Dermatology Department of Hospital Italiano de Buenos Aires between January 2012 and December 2018. We used the UVAR-XTS™ system (2 patients) and the CELLEX system (7 patients). Patients with acute GVHD received 2 sessions a week and were reassessed at 1 month, while those with chronic GVHD received 2 sessions every 2 weeks and were reassessed at 3 months. Treatment duration in both scenarios varied according to response. RESULTS: We evaluated 9 pediatric patients with corticosteroid-refractory, -dependent, and/or -resistant GVHD treated with ECP. Seven responded to treatment and 2 did not. Response was complete in 1 of the 9 patients with skin involvement and partial in 7. Complete response rates for the other sites of involvement were 60% (3/5) for the liver, 50% (1/2) for the gastrointestinal system, and 80% (4/5) for mucous membranes. Two patients died during the study period. CONCLUSION: ECP is a good treatment option for pediatric patients with acute or chronic GVHD.

3.
Genet Mol Res ; 14(4): 11710-8, 2015 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-26436495

RESUMEN

Chemokines are low-molecular weight proteins that play a key role in inflammatory processes. Genomic variations in chemokine receptors are associated with the susceptibility to various diseases. Polymorphisms in chemokine receptor type 5 (CCR5)-Δ32 and CCR2-V64I are related to human immunodeficiency virus infection resistance, which has led to genetic association studies for several other diseases. Given the heterogeneous distribution of these polymorphisms in different global populations and within Brazilian populations, we analyzed the prevalence of CCR5-Δ32 and CCR2-V64I polymorphisms in a mixed population from northeastern Brazil. The study included 223 individuals from the general population of the city of Parnaíba, Piauí, who had a mean age of 73 years. Of these individuals, 37.2% were men and 62.8% were women. Polymorphisms were analyzed using DNA extracted from peripheral blood leukocytes by using polymerase chain reaction alone (CCR5-Δ32) or accompanied by restriction endonuclease digestion (CCR2-V64I). In both cases, the genotypes were determined using 8% polyacrylamide gel electrophoresis and silver nitrate staining. The population conformed to Hardy-Weinberg equilibrium for both the loci studied. No individuals were homozygous for allele-Δ32, which was present in 1.8% of the population, whereas allele-64I was present in 13.9% of the participants studied; 74.9% were homozygous for the wild-type allele, while 22.4 and 2.7% were heterozygous and homozygous for the mutant allele, respectively. Additional studies are needed to investigate the relationship between these polymorphisms and disease etiopathogenesis in reference populations.


Asunto(s)
Frecuencia de los Genes , Genética de Población , Polimorfismo Genético , Receptores CCR2/genética , Receptores CCR5/genética , Anciano , Alelos , Indio Americano o Nativo de Alaska , Población Negra , Brasil , Femenino , Expresión Génica/inmunología , Genotipo , Heterocigoto , Homocigoto , Humanos , Masculino , Receptores CCR2/inmunología , Receptores CCR5/inmunología , Población Blanca
4.
Genet Mol Res ; 13(3): 7889-98, 2014 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-25299103

RESUMEN

Approximately 200 million people suffer from type 2 diabetes (T2D) worldwide, and the rapid increase in the prevalence of this disease is likely a result of multiple environmental factors, such as increased food intake and decreased physical activity in genetically predisposed individuals. Different population studies have demonstrated a strong association of two polymorphic variations in the TCF7L2 gene, the noncoding single nucleotide polymorphisms (SNPs) rs7903146 (C/T) and rs12255372 (G/T), with T2D. Herein, we analyzed the association of these SNPs with T2D in a population from northeastern Brazil. Our results showed that the genotype and allele frequencies in TCF7L2 rs7903146 and rs12255372 were similar in the patient and control groups (P > 0.05). In addition, the allele frequencies were not significantly associated with T2D risk [rs7903146: odds ratio (OR) = 0.95, 95% confidence interval (CI) = 0.52-1.76, P = 1.00, and rs12255372: OR = 1.38, 95%CI = 0.72-2.62, P = 0.41]. These data suggest that the TCF7L2 SNPs rs7903146 and rs12255372 may not significantly contribute to T2D susceptibility in this population. However, our results may reflect the small number of subjects. Alternatively, these results may be attributable to specific ethnic effects, as most of the previously reported associations were demonstrated with predominantly European populations. To reach a definitive conclusion on the role of such gene variants for T2D in mixed populations, additional efforts are necessary to replicate this study with larger populations from areas with more ethnic heterogeneity.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Polimorfismo Genético , Proteína 2 Similar al Factor de Transcripción 7/genética , Secuencia de Bases , Brasil , Cartilla de ADN , Humanos , Reacción en Cadena de la Polimerasa
5.
Genet Mol Res ; 12(3): 3698-707, 2013 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-23546974

RESUMEN

Venous thromboembolism (VTE) is an important cause of morbidity and mortality stemming from cardiovascular disease. It is a multifactorial disease caused by a combination of acquired risk factors, of which advanced age is the most significant, and genetic factors, including the variants FV G1691A, FII G20210A, and MTHFR C677T. We estimated the prevalence of these genomic variants in an elderly population of northeastern Brazil. The study included 188 elderly persons (65-93 years), of which 68 (36.2%) were men and 120 (63.8%) were women. Variants were detected by polymerase chain reaction-restriction fragment length polymorphism analysis, and subsequent electrophoresis on an 8% polyacrylamide gel stained with silver nitrate. The study population was in Hardy-Weinberg equilibrium for the 3 loci. Of the individuals analyzed, none carried variants of FV or FII (0%), and 24.7% had the MTHFR C677T polymorphism: 59 subjects (31.4%) were heterozygous (CT) and 17 subjects (9%) were homozygous (TT). Based on the analysis of these particular genes, we conclude that the study population does not present an increased risk for the development of VTE. Faced with a growing aging population worldwide, similar studies in other countries will help in the prevention of VTE in older individuals.


Asunto(s)
Variación Genética , Tromboembolia Venosa/genética , Anciano , Anciano de 80 o más Años , Brasil , Factor V/genética , Femenino , Sitios Genéticos , Genotipo , Heterocigoto , Homocigoto , Humanos , Masculino , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Mutación , Reacción en Cadena de la Polimerasa , Polimorfismo Genético , Polimorfismo de Longitud del Fragmento de Restricción , Protrombina/genética , Factores de Riesgo , Análisis de Secuencia de ADN
6.
Genet Mol Res ; 11(1): 332-9, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22370935

RESUMEN

The gene XRCC3 (X-ray cross complementing group 3) has the task of repairing damage that occurs when there is recombination between homologous chromosomes. Repair of recombination between homologous chromosomes plays an important role in maintaining genome integrity, although it is known that double-strand breaks are the main inducers of chromosomal aberrations. Changes in the XRCC3 protein lead to an increase in errors in chromosome segregation due to defects in centrosomes, resulting in aneuploidy and other chromosomal aberrations, such as small increases in telomeres. We examined XRCC3 Thr241Met polymorphism using PCR-RFLP in 80 astrocytoma and glioblastoma samples. The individuals of the control group (N = 100) were selected from the general population of the São Paulo State. Odds ratio and 95%CI were calculated using a logistic regression model. Patients who had the allele Met of the XRCC3 Thr241Met polymorphism had a significantly increased risk of tumor development (odds ratio = 3.13; 95% confidence interval = 1.50-6.50). There were no significant differences in overall survival of patients. We suggest that XRCC3 Thr241Met polymorphism is involved in susceptibility for developing astrocytomas and glioblastomas.


Asunto(s)
Astrocitoma/genética , Proteínas de Unión al ADN/genética , Glioblastoma/genética , Adolescente , Adulto , Anciano , Alelos , Centrosoma/patología , Niño , Preescolar , Aberraciones Cromosómicas , Segregación Cromosómica/genética , Reparación del ADN , Femenino , Predisposición Genética a la Enfermedad , Variación Genética , Genotipo , Humanos , Lactante , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Adulto Joven
7.
Genet Mol Res ; 10(2): 1120-9, 2011 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-21710464

RESUMEN

XRCC genes (X-ray cross-complementing group) were discovered mainly for their roles in protecting mammalian cells against damage caused by ionizing radiation. Studies determined that these genes are important in the genetic stability of DNA. Although the loss of some of these genes does not necessarily confer high levels of sensitivity to radiation, they have been found to represent important components of various pathways of DNA repair. To ensure the integrity of the genome, a complex system of DNA repair was developed. Base excision repair is the first defense mechanism of cells against DNA damage and a major event in preventing mutagenesis. Repair genes may play an important role in maintaining genomic stability through different pathways that are mediated by base excision. In the present study, we examined XRCC1Arg194Trp and XRCC1Arg399Gln polymorphism using PCR-RFLP in 80 astrocytoma and glioblastoma samples. Patients who had the allele Trp of the XRCC1Arg194Trp polymorphism had an increased risk of tumor development (OR = 8.80; confidence interval at 95% (95%CI) = 4.37-17.70; P < 0.001), as did the allele Gln of XRCC1Arg399Gln (OR = 1.01; 95%CI = 0.53-1.93; P = 0.971). Comparison of overall survival of patients did not show significant differences. We suggest that XRCC1Arg194Trp and XRCC1Arg399Gln polymorphisms are involved in susceptibility for developing astrocytomas and glioblastomas.


Asunto(s)
Neoplasias Encefálicas/genética , Proteínas de Unión al ADN/genética , Glioma/genética , Arginina/química , Cartilla de ADN , Proteínas de Unión al ADN/química , Glicina/química , Humanos , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Triptófano/química , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
8.
Genet Mol Res ; 9(4): 2328-34, 2010 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-21128213

RESUMEN

Glutathione S-transferases (GSTs) constitute a superfamily of ubiquitous multifunctional enzymes that are involved in the cellular detoxification of a large number of endogenous and exogenous chemical agents that have electrophilic functional groups. People who have deficiencies in this family of genes are at increased risk of developing some types of tumors. We examined GSTP1 Ile105Val polymorphism using PCR-RFLP in 80 astrocytoma and glioblastoma samples. Patients who had the Val allele of the GSTP1 Ile105Val polymorphism had an increased risk of tumor development (odds ratio = 8.60; 95% confidence interval = 4.74-17.87; P < 0.001). Overall survival of patients did not differ significantly. We suggest that GSTP1 Ile105Val polymorphisms are involved in susceptibility to developing astrocytomas and glioblastomas.


Asunto(s)
Astrocitoma/genética , Neoplasias Encefálicas/genética , Glioblastoma/genética , Glutatión Transferasa/genética , Isoleucina/genética , Polimorfismo de Nucleótido Simple , Valina/genética , Adolescente , Adulto , Anciano , Astrocitoma/enzimología , Secuencia de Bases , Neoplasias Encefálicas/enzimología , Estudios de Casos y Controles , Cartilla de ADN , Femenino , Glioblastoma/enzimología , Glutatión Transferasa/química , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Adulto Joven
9.
Genet Mol Res ; 8(4): 1257-63, 2009 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-19876867

RESUMEN

Disruption or loss of tumor suppressor gene TP53 is implicated in the development or progression of almost all different types of human malignancies. Other members of the p53 family have been identified. One member, p73, not only shares a high degree of similarity with p53 in its primary sequence, but also has similar functions. Like p53, p73 can bind to DNA and activate transcription. Using PCR-SSCP and gene sequencing, we analyzed the TP53 and TP73 genes in a case of a grade III anaplastic astrocytoma that progressed to glioblastoma. We found a deletion of AAG at position 595-597 of TP53 (exon 6), resulting in the deletion of Glu 199 in the protein and a genomic polymorphism of TP73, identified as an A-to-G change, at position E8/+15 at intron 8 (IVS8-15A>G). The mutation found at exon 6 of the gene TP53 could be associated with the rapid tumoral progression found in this case, since the mutated p53 may inactivate the wild-type p53 and the p73alpha protein, which was conserved here, leading to an increase in cellular instability.


Asunto(s)
Astrocitoma/genética , Neoplasias Encefálicas/genética , Proteínas de Unión al ADN/genética , Proteínas Nucleares/genética , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/genética , Adulto , Secuencia de Bases , Cartilla de ADN , Humanos , Masculino , Reacción en Cadena de la Polimerasa , Polimorfismo Conformacional Retorcido-Simple , Proteína Tumoral p73
10.
Genet Mol Res ; 8(1): 8-18, 2009 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-19224462

RESUMEN

The p53 tumor suppressor gene is the most frequently mutated gene in human cancer; this gene is mutated in up to 50% of human tumors. It has a critical role in the cell cycle, apoptosis and cell senescence, and it participates in many crucial physiological and pathological processes. Polymorphisms of p53 have been suggested to be associated with genetically determined susceptibility in various types of cancer. Another process involved with the development and progression of tumors is DNA hypermethylation. Aberrant methylation of the promoter is an alternative epigenetic change in genetic mechanisms, leading to tumor suppressor gene inactivation. In the present study, we examined the TP53 Arg72Pro and Pro47Ser polymorphisms using PCR-RFLP and the pattern of methylation of the p53 gene by methylation-specific PCR in 90 extra-axial brain tumor samples. Patients who had the allele Pro of the TP53 Arg72Pro polymorphism had an increased risk of tumor development (odds ratio, OR = 3.23; confidence interval at 95%, 95%CI = 1.71-6.08; P = 0.003), as did the allele Ser of TP53 Pro47Ser polymorphism (OR = 1.28; 95%CI = 0.03-2.10; P = 0.01). Comparison of overall survival of patients did not show significant differences. In the analysis of DNA methylation, we observed that 37.5% of meningiomas, 30% of schwannomas and 52.6% of metastases were hypermethylated, suggesting that methylation is important for tumor progression. We suggest that TP53 Pro47Ser and Arg72Pro polymorphisms and DNA hypermethylation are involved in susceptibility for developing extra-axial brain tumors.


Asunto(s)
Neoplasias Encefálicas/genética , Metilación de ADN/genética , Genes p53/genética , Meningioma/genética , Estudios de Casos y Controles , Codón , Predisposición Genética a la Enfermedad , Humanos , Neurilemoma/genética , Reacción en Cadena de la Polimerasa , Polimorfismo Genético
11.
Biocell ; Biocell;32(3): 237-243, Dec. 2008. ilus, tab
Artículo en Inglés | LILACS | ID: lil-541105

RESUMEN

Gastric cancer is one of the most common malignancies. DNA methylation is implicated in DNA mismatch repair genes deficiency. In the present study, we evaluated the methylation status of MLH1, MSH2, MSH6 and PMS2 in 20 diffuse- and 26 intestinal-type gastric cancer samples and 20 normal gastric mucosal of gastric cancer patients from Northern Brazil. We found that none of the nonneoplastic samples showed methylation of any gene promoter and 50% of gastric cancer samples showed at least one methylated gene promoter. Methylation frequencies of MLH1, MSH2, MSH6 and PMS2 promoter were 21.74%, 17.39%, 0% and 28.26% respectively in gastric cancer samples. MLH1 and PMS2 methylation were associated with neoplastic samples compared to nonneoplastic ones. PMS2 methylation was associated with diffuse- and intestinal-type cancer compared with normal controls. Intestinal-type cancer showed significant association with MLH1 methylation. Diffuse-type cancer was significantly associated with MSH2 methylation. Our findings show differential gene methylation in tumoral tissue, which allows us to conclude that methylation is associated with gastric carcinogenesis. Methylation of mismatch repair genes was associated with gastric carcinogenesis and may be a helpful tool for diagnosis, prognosis and therapies. However, MSH6 does not seem to be regulated by methylation in our samples.


Asunto(s)
Humanos , Masculino , Adulto , Femenino , Persona de Mediana Edad , Metilación de ADN , Neoplasias Gástricas/genética , Reparación de la Incompatibilidad de ADN , Análisis de Secuencia de ADN , Brasil , Enzimas Reparadoras del ADN/genética , Regiones Promotoras Genéticas
12.
Biocell ; Biocell;32(3): 237-243, Dec. 2008. ilus, tab
Artículo en Inglés | BINACIS | ID: bin-127201

RESUMEN

Gastric cancer is one of the most common malignancies. DNA methylation is implicated in DNA mismatch repair genes deficiency. In the present study, we evaluated the methylation status of MLH1, MSH2, MSH6 and PMS2 in 20 diffuse- and 26 intestinal-type gastric cancer samples and 20 normal gastric mucosal of gastric cancer patients from Northern Brazil. We found that none of the nonneoplastic samples showed methylation of any gene promoter and 50% of gastric cancer samples showed at least one methylated gene promoter. Methylation frequencies of MLH1, MSH2, MSH6 and PMS2 promoter were 21.74%, 17.39%, 0% and 28.26% respectively in gastric cancer samples. MLH1 and PMS2 methylation were associated with neoplastic samples compared to nonneoplastic ones. PMS2 methylation was associated with diffuse- and intestinal-type cancer compared with normal controls. Intestinal-type cancer showed significant association with MLH1 methylation. Diffuse-type cancer was significantly associated with MSH2 methylation. Our findings show differential gene methylation in tumoral tissue, which allows us to conclude that methylation is associated with gastric carcinogenesis. Methylation of mismatch repair genes was associated with gastric carcinogenesis and may be a helpful tool for diagnosis, prognosis and therapies. However, MSH6 does not seem to be regulated by methylation in our samples.(AU)


Asunto(s)
Humanos , Masculino , Adulto , Femenino , Persona de Mediana Edad , Anciano , Metilación de ADN , Neoplasias Gástricas/genética , Reparación de la Incompatibilidad de ADN , Análisis de Secuencia de ADN , Brasil , Enzimas Reparadoras del ADN/genética , Regiones Promotoras Genéticas
13.
Braz J Med Biol Res ; 41(6): 539-43, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18622497

RESUMEN

Gastric cancer is the forth most frequent malignancy and the second most common cause of cancer death worldwide. DNA methylation is the most studied epigenetic alteration, occurring through a methyl radical addition to the cytosine base adjacent to guanine. Many tumor genes are inactivated by DNA methylation in gastric cancer. We evaluated the DNA methylation status of ANAPC1, CDKN2A and TP53 by methylation-specific PCR in 20 diffuse- and 26 intestinal-type gastric cancer samples and 20 normal gastric mucosa in individuals from Northern Brazil. All gastric cancer samples were advanced stage adenocarcinomas. Gastric samples were surgically obtained at the João de Barros Barreto University Hospital, State of Pará, and were stored at -80 degrees C before DNA extraction. Patients had never been submitted to chemotherapy or radiotherapy, nor did they have any other diagnosed cancer. None of the gastric cancer samples presented methylated DNA sequences for ANAPC1 and TP53. CDKN2A methylation was not detected in any normal gastric mucosa; however, the CDKN2A promoter was methylated in 30.4% of gastric cancer samples, with 35% methylation in diffuse-type and 26.9% in intestinal-type cancers. CDKN2A methylation was associated with the carcinogenesis process for ~30% diffuse-type and intestinal-type compared to non-neoplastic samples. Thus, ANAPC1 and TP53 methylation was probably not implicated in gastric carcinogenesis in our samples. CDKN2A can be implicated in the carcinogenesis process of only a subset of gastric neoplasias.


Asunto(s)
Adenocarcinoma/genética , Metilación de ADN/genética , Genes p16 , Genes p53 , Neoplasias Gástricas/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Adulto , Anciano , Ciclosoma-Complejo Promotor de la Anafase , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología
14.
Genet Mol Res ; 7(2): 451-9, 2008 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-18551412

RESUMEN

Cancer is one of the most common and severe problems in clinical medicine, and nervous system tumors represent about 2% of the types of cancer. The central role of the nervous system in the maintenance of vital activities and the functional consequences of the loss of neurons can explain how severe brain cancers are. The cell cycle is a highly complex process, with a wide number of regulatory proteins involved, and such proteins can suffer alterations that transform normal cells into malignant ones. The INK4 family members (CDK inhibitors) are the cell cycle regulators that block the progression of the cycle through the R point, causing an arrest in G1 stage. The p14ARF (alternative reading frame) gene is a tumor suppressor that inhibits p53 degradation during the progression of the cell cycle. The PTEN gene is related to the induction of growth suppression through cell cycle arrest, to apoptosis and to the inhibition of cell adhesion and migration. The purpose of the present study was to assess the mutational state of the genes p14ARF, p15INK4b, p16INK4a, and PTEN in 64 human nervous system tumor samples. Homozygous deletions were found in exon 2 of the p15INK4b gene and exon 3 of the p16INK4a gene in two schwannomas. Three samples showed a guanine deletion (63 codon) which led to a loss of heterozygosity in the p15 gene, and no alterations could be seen in the PTEN gene. Although the group of patients was heterogeneous, our results are in accordance with other different studies that indicate that homozygous deletion and loss of heterozygosity in the INK4 family members are frequently observed in nervous system tumors.


Asunto(s)
Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Neoplasias del Sistema Nervioso/genética , Fosfohidrolasa PTEN/genética , Proteína p14ARF Supresora de Tumor/genética , Análisis Mutacional de ADN/métodos , Eliminación de Gen , Homocigoto , Humanos , Pérdida de Heterocigocidad , Neoplasias del Sistema Nervioso/patología , Reacción en Cadena de la Polimerasa
15.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;41(6): 539-543, June 2008. ilus, tab
Artículo en Inglés | LILACS | ID: lil-485848

RESUMEN

Gastric cancer is the forth most frequent malignancy and the second most common cause of cancer death worldwide. DNA methylation is the most studied epigenetic alteration, occurring through a methyl radical addition to the cytosine base adjacent to guanine. Many tumor genes are inactivated by DNA methylation in gastric cancer. We evaluated the DNA methylation status of ANAPC1, CDKN2A and TP53 by methylation-specific PCR in 20 diffuse- and 26 intestinal-type gastric cancer samples and 20 normal gastric mucosa in individuals from Northern Brazil. All gastric cancer samples were advanced stage adenocarcinomas. Gastric samples were surgically obtained at the João de Barros Barreto University Hospital, State of Pará, and were stored at -80°C before DNA extraction. Patients had never been submitted to chemotherapy or radiotherapy, nor did they have any other diagnosed cancer. None of the gastric cancer samples presented methylated DNA sequences for ANAPC1 and TP53. CDKN2A methylation was not detected in any normal gastric mucosa; however, the CDKN2A promoter was methylated in 30.4 percent of gastric cancer samples, with 35 percent methylation in diffuse-type and 26.9 percent in intestinal-type cancers. CDKN2A methylation was associated with the carcinogenesis process for ~30 percent diffuse-type and intestinal-type compared to non-neoplastic samples. Thus, ANAPC1 and TP53 methylation was probably not implicated in gastric carcinogenesis in our samples. CDKN2A can be implicated in the carcinogenesis process of only a subset of gastric neoplasias.


Asunto(s)
Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adenocarcinoma/genética , Metilación de ADN/genética , Neoplasias Gástricas/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Estudios de Casos y Controles , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología
16.
Genet Mol Res ; 7(1): 207-16, 2008 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-18393224

RESUMEN

The TP53 tumor suppressor gene codifies a protein responsible for preventing cells with genetic damage from growing and dividing by blocking cell growth or apoptosis pathways. A common single nucleotide polymorphism (SNP) in TP53 codon 72 (Arg72Pro) induces a 15-fold decrease of apoptosis-inducing ability and has been associated with susceptibility to human cancers. Recently, another TP53 SNP at codon 47 (Pro47Ser) was reported to have a low apoptosis-inducing ability; however, there are no association studies between this SNP and cancer. Aiming to study the role of TP53 Pro47Ser and Arg72Pro on glioma susceptibility and oncologic prognosis of patients, we investigated the genotype distribution of these SNPs in 94 gliomas (81 astrocytomas, 8 ependymomas and 5 oligodendrogliomas) and in 100 healthy subjects by the polymerase chain reaction-restriction fragment length polymorphism approach. Chi-square and Fisher exact test comparisons for genotype distributions and allele frequencies did not reveal any significant difference between patients and control groups. Overall and disease-free survivals were calculated by the Kaplan-Meier method, and the log-rank test was used for comparisons, but no significant statistical difference was observed between the two groups. Our data suggest that TP53 Pro47Ser and Arg72Pro SNPs are not involved either in susceptibility to developing gliomas or in patient survival, at least in the Brazilian population.


Asunto(s)
Glioma/genética , Polimorfismo de Nucleótido Simple , Proteína p53 Supresora de Tumor/genética , Adolescente , Adulto , Anciano , Apoptosis/genética , Brasil , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Frecuencia de los Genes , Genes p53 , Predisposición Genética a la Enfermedad , Genotipo , Glioma/etiología , Glioma/mortalidad , Humanos , Lactante , Masculino , Persona de Mediana Edad , Pronóstico , Análisis de Supervivencia
17.
Genet. mol. res. (Online) ; Genet. mol. res. (Online);7(1): 207-216, Jan. 2008. ilus, tab
Artículo en Inglés | LILACS | ID: lil-553787

RESUMEN

The TP53 tumor suppressor gene codifies a protein responsible for preventing cells with genetic damage from growing and dividing by blocking cell growth or apoptosis pathways. A common single nucleotide polymorphism (SNP) in TP53 codon 72 (Arg72Pro) induces a 15-fold decrease of apoptosis-inducing ability and has been associated with susceptibility to human cancers. Recently, another TP53 SNP at codon 47 (Pro47Ser) was reported to have a low apoptosis-inducing ability; however, there are no association studies between this SNP and cancer. Aiming to study the role of TP53 Pro47Ser and Arg72Pro on glioma susceptibility and oncologic prognosis of patients, we investigated the genotype distribution of these SNPs in 94 gliomas (81 astrocytomas, 8 ependymomas and 5 oligodendrogliomas) and in 100 healthy subjects by the polymerase chain reaction-restriction fragment length polymorphism approach. Chi-square and Fisher exact test comparisons for genotype distributions and allele frequencies did not reveal any significant difference between patients and control groups. Overall and disease-free survivals were calculated by the Kaplan-Meier method, and the log-rank test was used for comparisons, but no significant statistical difference was observed between the two groups. Our data suggest that TP53 Pro47Ser and Arg72Pro SNPs are not involved either in susceptibility to developing gliomas or in patient survival, at least in the Brazilian population.


Asunto(s)
Humanos , Masculino , Femenino , Preescolar , Niño , Adolescente , Adulto , Persona de Mediana Edad , Glioma/genética , Polimorfismo de Nucleótido Simple , /genética , Apoptosis/genética , Brasil , Estudios de Casos y Controles , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genotipo , Glioma/etiología , Glioma/mortalidad , Pronóstico , Análisis de Supervivencia
18.
Genet. mol. res. (Online) ; Genet. mol. res. (Online);7(2): 451-459, 2008. tab, ilus
Artículo en Inglés | LILACS | ID: lil-640993

RESUMEN

The cancer is one of the most common and severe problems in clinical medicine, and nervous system tumors represent about 2% of the types of cancer. The central role of the nervous system in the maintenance of vital activities and the functional consequences of the loss of neurons can explain how severe brain cancers are. The cell cycle is a highly complex process, with a wide number of regulatory proteins involved, and such proteins can suffer alterations that transform normal cells into malignant ones. The INK4 family members (CDK inhibitors) are the cell cycle regulators that block the progression of the cycle through the R point, causing an arrest in G1 stage. The p14ARF (alternative reading frame) gene is a tumor suppressor that inhibits p53 degradation during the progression of the cell cycle. The PTEN gene is related to the induction of growth suppression through cell cycle arrest, to apoptosis and to the inhibition of cell adhesion and migration. The purpose of the present study was to assess the mutational state of the genes p14ARF, p15INK4b, p16INK4a, and PTEN in 64 human nervous system tumor samples. Homozygous deletions were found in exon 2 of the p15INK4b gene and exon 3 of the p16INK4a gene in two schwannomas. Three samples showed a guanine deletion (63 codon) which led to a loss of heterozygosity in the p15 gene, and no alterations could be seen in the PTEN gene. Although the group of patients was heterogeneous, our results are in accordance with other different studies that indicate that homozygous deletion and loss of heterozygosity in the INK4 family members are frequently observed in nervous system tumors.


Asunto(s)
Humanos , /genética , /genética , Neoplasias del Sistema Nervioso/genética , /genética , Análisis Mutacional de ADN/métodos , Eliminación de Gen , Homocigoto , Pérdida de Heterocigocidad , Neoplasias del Sistema Nervioso/patología , Reacción en Cadena de la Polimerasa , Fosfohidrolasa PTEN
19.
Genet Mol Res ; 6(4): 1019-25, 2007 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-18273794

RESUMEN

Gliomas are the most common tumors of the central nervous system. In spite of the marked advances in the characterization of the molecular pathogenesis of gliomas, these tumors remain incurable and, in most of the cases, resistant to treatments, due to their molecular heterogeneity. Gene PAX6, which encodes a transcription factor that plays an important role in the development of the central nervous system, was recently recognized as a tumor suppressor in gliomas. The objective of the present study was to analyze the mutational status of the coding and regulating regions of PAX6 in 94 gliomas: 81 astrocytomas (11 grade I, 23 grade II, 8 grade III, and 39 grade IV glioblastomas), 5 oligodendrogliomas (3 grade II, and 2 grade III), and 8 ependymomas (5 grade II, and 3 grade III). Two regulating regions (SX250 and EIE) and the 11 coding regions (exons 4-13, plus exon 5a resulting from alternative splicing) of gene PAX6 were analyzed and no mutation was found. Therefore, we conclude that the tumor suppressor role of PAX6, reported in previous studies on gliomas, is not due to mutation in its coding and regulating regions, suggesting the involvement of epigenetic mechanisms in the silencing of PAX6 in these tumors.


Asunto(s)
Neoplasias del Sistema Nervioso Central/genética , Proteínas del Ojo/genética , Glioma/genética , Proteínas de Homeodominio/genética , Mutación , Factores de Transcripción Paired Box/genética , Proteínas Represoras/genética , Adolescente , Adulto , Anciano , Astrocitoma/genética , Secuencia de Bases , Niño , Preescolar , Análisis Mutacional de ADN , Cartilla de ADN/genética , ADN de Neoplasias/genética , Ependimoma/genética , Epigénesis Genética , Femenino , Silenciador del Gen , Humanos , Lactante , Masculino , Persona de Mediana Edad , Oligodendroglioma/genética , Factor de Transcripción PAX6 , Reacción en Cadena de la Polimerasa
20.
Genet. mol. res. (Online) ; Genet. mol. res. (Online);6(4): 1019-1025, 2007. tab
Artículo en Inglés | LILACS | ID: lil-520048

RESUMEN

Gliomas are the most common tumors of the central nervous system. In spite of the marked advances in the characterization of the molecular pathogenesis of gliomas, these tumors remain incurable and, in most of the cases, resistant to treatments, due to their molecular heterogeneity. Gene PAX6, which encodes a transcription factor that plays an important role in the development of the central nervous system, was recently recognized as a tumor suppressor in gliomas. The objective of the present study was to analyze the mutational status of the coding and regulating regions of PAX6 in 94 gliomas: 81 astrocytomas (11 grade I, 23 grade II, 8 grade III, and 39 grade IV glioblastomas), 5 oligodendrogliomas (3 grade II, and 2 grade III), and 8 ependymomas (5 grade II, and 3 grade III). Two regulating regions (SX250 and EIE) and the 11 coding regions (exons 4-13, plus exon 5a resulting from alternative splicing) of gene PAX6 were analyzed and no mutation was found. Therefore, we conclude that the tumor suppressor role of PAX6, reported in previous studies on gliomas, is not due to mutation in its coding and regulating regions, suggesting the involvement of epigenetic mechanisms in the silencing of PAX6 in these tumors.


Asunto(s)
Humanos , Masculino , Femenino , Preescolar , Niño , Adolescente , Adulto , Persona de Mediana Edad , ADN de Neoplasias/genética , Glioma/genética , Mutación , Neoplasias del Sistema Nervioso Central/genética , Proteínas Represoras/genética , Proteínas de Homeodominio/genética , Proteínas del Ojo/genética , Astrocitoma , Secuencia de Bases , Análisis Mutacional de ADN , Epigénesis Genética , Ependimoma/genética , Factores de Transcripción Paired Box/genética , Silenciador del Gen , Oligodendroglioma/genética , Reacción en Cadena de la Polimerasa , Cartilla de ADN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA