Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 12(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36832878

RESUMEN

Olive tree crops and the olive oil market are becoming less and less diverse due to the rise of intensive growth varieties, with the consequent loss of varietal richness provided by oils from minority and autochthonous cultivars. "Royal de Calatayud" and "Negral de Sabiñán" are two local minority cultivars in Aragon (Spain). Fruit parameters such as ripening, fresh weight, and oil yield were evaluated, as well as physico-chemical and chemical composition parameters in olive oil in comparison with "Arbequina", a cultivar widespread in Spain and other countries. Fruits were harvested from October to December in 2017 and 2019. Chemometric analysis revealed significant varietal differences among the three cultivars. In comparison with "Arbequina", higher oil yields were obtained in the two local cultivars. "Royal de Calatayud" has a higher oleic acid content and a greater quantity of phenolic compounds. It thus displays a better nutritional profile than "Arbequina". This preliminary study shows that "Royal de Calatayud" could be regarded as an excellent alternative to the "Arbequina" cultivar in the parameters analyzed.

2.
Foods ; 11(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36076773

RESUMEN

Sterol composition is used as a "fingerprint" to demonstrate the authenticity of olive oils. Our study's objective was to exhaustively characterize the sterol composition of Empeltre olive oils from clonal selection during the ripening period in 2017, 2018, and 2019. We likewise assessed the influence of crop year, fruit ripening, and clonal selection on the oils' regulatory compliance in terms of sterol composition. Empeltre olive oils were shown to have medium-range ß-sitosterol and Δ5-avenasterol content, along with elevated amounts of campesterol and Δ7-stigmastenol. A total of 26% and 12% of the samples were non-compliant in terms of apparent ß-sitosterol and Δ7-stigmastenol, respectively. Crop year was the most influential factor in the case of most sterols. Clone type was the least influential factor, except in the case of campesterol. Olive maturity was only significant for Δ7-sterols. We likewise applied a discriminant analysis, with "crop year" as the grouping variable: 94.9% of the oils were thereby classified correctly.

3.
J Sci Food Agric ; 102(13): 5778-5786, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35398902

RESUMEN

BACKGROUND: In this study, the effects of crop year, harvest date and clone on the fruit characteristics and chemical composition of Empeltre olive oils were evaluated. For this purpose, the weight and oil content of fruit and the fatty acid composition, polyphenol content and oxidative stability of the olive oil was analysed throughout ripening during three successive seasons. RESULTS: The weight and moisture in the fruit, as well as the fatty acids and polyphenol content in the olive oil, were mainly affected by crop year. In contrast, the stability was strongly influenced by the harvest date. Both factors had an influence on the fruit's oil content. The clone was not a substantial component in terms of variability, although the interaction with crop year was notable for some of the characteristics. The oil content increased significantly along with the harvest date and reached maximum values in the last period (44.9%). Conversely, stability and polyphenols decreased significantly (depending on the year, by 30-70%) from October to December, reaching the highest mean values between 1 October and 10 November (15.5 h; 500 mg caffeic acid kg-1 ). Oleic acid and monounsaturated/polyunsaturated fatty acids (MUFA/PUFA) did not show significant differences depending on the harvest date, but between years, with 2018 having the highest percentage of oleic acid (72.72%) and MUFA/PUFA (8.38). CONCLUSION: Early harvesting of Empeltre olives would provide considerably more stable olive oils, regardless of the clone selected, with higher phenolic content. It would not affect the MUFA/PUFA ratio, mainly influenced by the crop year. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Frutas , Olea , Ácidos Grasos/química , Ácidos Grasos Monoinsaturados , Ácidos Grasos Insaturados/análisis , Frutas/química , Olea/química , Ácido Oléico/análisis , Aceite de Oliva/química , Aceites de Plantas/química , Polifenoles/análisis
4.
Plant Mol Biol ; 104(3): 283-296, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32740897

RESUMEN

KEY MESSAGE: Differences in FAE1 enzyme affinity for the acyl-CoA substrates, as well as the balance between the different pathways involved in their incorporation to triacylglycerol might be determinant of the different composition of the seed oil in Brassicaceae. Brassicaceae present a great heterogeneity of seed oil and fatty acid composition, accumulating Very Long Chain Fatty Acids with industrial applications. However, the molecular determinants of these differences remain elusive. We have studied the ß-ketoacyl-CoA synthase from the high erucic feedstock Thlaspi arvense (Pennycress). Functional characterization of the Pennycress FAE1 enzyme was performed in two Arabidopsis backgrounds; Col-0, with less than 2.5% of erucic acid in its seed oil and the fae1-1 mutant, deficient in FAE1 activity, that did not accumulate erucic acid. Seed-specific expression of the Pennycress FAE1 gene in Col-0 resulted in a 3 to fourfold increase of erucic acid content in the seed oil. This increase was concomitant with a decrease of eicosenoic acid levels without changes in oleic ones. Interestingly, only small changes in eicosenoic and erucic acid levels occurred when the Pennycress FAE1 gene was expressed in the fae1-1 mutant, with high levels of oleic acid available for elongation, suggesting that the Pennycress FAE1 enzyme showed higher affinity for eicosenoic acid substrates, than for oleic ones in Arabidopsis. Erucic acid was incorporated to triacylglycerol in the transgenic lines without significant changes in their levels in the diacylglycerol fraction, suggesting that erucic acid was preferentially incorporated to triacylglycerol via DGAT1. Expression analysis of FAE1, AtDGAT1, AtLPCAT1 and AtPDAT1 genes in the transgenic lines further supported this conclusion. Differences in FAE1 affinity for the oleic and eicosenoic substrates among Brassicaceae, as well as their incorporation to triacylglycerol might explain the differences in composition of their seed oil.


Asunto(s)
3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/metabolismo , Biocombustibles , Vías Biosintéticas , Brassicaceae/metabolismo , Thlaspi/enzimología , Thlaspi/metabolismo , Triglicéridos/biosíntesis , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/genética , Aciltransferasas/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Vías Biosintéticas/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Ácidos Erucicos/metabolismo , Elongasas de Ácidos Grasos/genética , Elongasas de Ácidos Grasos/metabolismo , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica de las Plantas , Fenotipo , Aceites de Plantas/metabolismo , Plantas Modificadas Genéticamente , Semillas/genética , Análisis de Secuencia , Thlaspi/genética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...